Publications by authors named "Siddhaling Urolagin"

Histopathology image segmentation is a challenging task in medical image processing. This work aims to segment lesion regions from colonoscopy histopathology images. Initially, the images are preprocessed and then segmented using the multilevel image thresholding technique.

View Article and Find Full Text PDF

Histopathology image analysis is considered as a gold standard for the early diagnosis of serious diseases such as cancer. The advancements in the field of computer-aided diagnosis (CAD) have led to the development of several algorithms for accurately segmenting histopathology images. However, the application of swarm intelligence for segmenting histopathology images is less explored.

View Article and Find Full Text PDF

Several methods have been developed to predict effects of amino acid substitutions on protein stability. Benchmark datasets are essential for method training and testing and have numerous requirements including that the data is representative for the investigated phenomenon. Available machine learning algorithms for variant stability have all been trained with ProTherm data.

View Article and Find Full Text PDF

More reliable and faster prediction methods are needed to interpret enormous amounts of data generated by sequencing and genome projects. We have developed a new computational tool, PON-P2, for classification of amino acid substitutions in human proteins. The method is a machine learning-based classifier and groups the variants into pathogenic, neutral and unknown classes, on the basis of random forest probability score.

View Article and Find Full Text PDF

Many proteins contain intrinsically disordered regions, which may be crucial for function, but on the other hand be related to the pathogenicity of variants. Prediction programs have been developed to detect disordered regions from sequences and used to predict the consequences of variants, although their performance for this task has not been assessed. We tested the performance of protein disorder prediction programs in detecting changes to disorder caused by amino acid substitutions.

View Article and Find Full Text PDF