Publications by authors named "Siddamadappa Chandrashekaran"

Unlabelled: Macroautophagy/autophagy functions as a part of the innate immune system in clearing intracellular pathogens. Although this process is well known, the mechanisms that control antibacterial autophagy are not clear. In this study we show that during intracellular infection, the activity of TFEB (transcription factor EB), a master regulator of autophagy and lysosome biogenesis, is suppressed by maintaining it in a phosphorylated state on the lysosomes.

View Article and Find Full Text PDF

The characteristic feature of type II restriction endonucleases (REases) is their exquisite sequence specificity and obligate Mg(2+) requirement for catalysis. Efficient cleavage of DNA only in the presence of Ca(2+) ions, comparable with that of Mg(2+), is previously not described. Most intriguingly, KpnI REase exhibits Ca(2+)-dependent specific DNA cleavage.

View Article and Find Full Text PDF

The molecular basis of the interaction of KpnI restriction endonuclease (REase) and the corresponding methyltransferase (MTase) at their cognate recognition sequence is investigated using a range of footprinting techniques. DNase I protection analysis with the REase reveals the protection of a 14-18 bp region encompassing the hexanucleotide recognition sequence. The MTase, in contrast, protects a larger region.

View Article and Find Full Text PDF

KpnI DNA-(N(6)-adenine)-methyltransferase (KpnI MTase) is a member of a restriction-modification (R-M) system in Klebsiella pneumoniae and recognizes the sequence 5'-GGTACC-3'. It modifies the recognition sequence by transferring the methyl group from S-adenosyl-l-methionine (AdoMet) to the N(6) position of adenine residue. KpnI MTase occurs as a dimer in solution as shown by gel filtration and chemical cross-linking analysis.

View Article and Find Full Text PDF