Saponin-based vaccine adjuvants are potent in preclinical animal models and humans, but their mechanisms of action remain poorly understood. Here, using a stabilized HIV envelope trimer immunogen, we carried out studies in nonhuman primates (NHPs) comparing the most common clinical adjuvant aluminum hydroxide (alum) with saponin/monophosphoryl lipid A nanoparticles (SMNP), an immune-stimulating complex-like adjuvant. SMNP elicited substantially stronger humoral immune responses than alum, including 7-fold higher peak antigen-specific germinal center B-cell responses, 18-fold higher autologous neutralizing antibody titers, and higher levels of antigen-specific plasma and memory B cells.
View Article and Find Full Text PDFSaponin-based vaccine adjuvants are potent in preclinical animal models and humans, but their mechanisms of action remain poorly understood. Here, using a stabilized HIV envelope trimer immunogen, we carried out studies in non-human primates (NHPs) comparing the most common clinical adjuvant alum with Saponin/MPLA Nanoparticles (SMNP), a novel ISCOMs-like adjuvant. SMNP elicited substantially stronger humoral immune responses than alum, including 7-fold higher peak antigen-specific germinal center B cell responses, 18-fold higher autologous neutralizing antibody titers, and higher levels of antigen-specific plasma and memory B cells.
View Article and Find Full Text PDFNeutralizing monoclonal antibodies hold great potential for prevention of human immunodeficiency virus (HIV) acquisition. IgG is the most abundant antibody in human serum, has a long half-life, and potent effector functions, making it a prime candidate for an HIV prevention therapeutic. We combined Positron Emission Tomography imaging and fluorescent microscopy of Cu-labeled, photoactivatable-green fluorescent protein HIV (PA-GFP-BaL) and fluorescently labeled HGN194 IgG1 to determine whether intravenously instilled IgG influences viral interaction with mucosal barriers and viral penetration in colorectal tissue 2 h after rectal viral challenge.
View Article and Find Full Text PDFAntigen accumulation in lymph nodes (LNs) is critical for vaccine efficacy, but understanding of vaccine biodistribution in humans or large animals remains limited. Using the rhesus macaque model, we employed a combination of positron emission tomography (PET) and fluorescence imaging to characterize the whole-animal to tissue-level biodistribution of a subunit vaccine comprised of an HIV envelope trimer protein nanoparticle (trimer-NP) and lipid-conjugated CpG adjuvant (amph-CpG). Following immunization in the thigh, PET imaging revealed vaccine uptake primarily in inguinal and iliac LNs, reaching distances up to 17 cm away from the injection site.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) vaccines have not been successful in clinical trials. Dimeric IgA (dIgA) in the form of secretory IgA is the most abundant antibody class in mucosal tissues, making dIgA a prime candidate for potential HIV vaccines. We coupled Positron Emission Tomography (PET) imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-GFP HIV (PA-GFP-BaL) and fluorescently labeled dIgA to determine how dIgA antibodies influence virus interaction with mucosal barriers and viral penetration in colorectal tissue.
View Article and Find Full Text PDFNucleotide analogues that incorporate a metabolically labile nucleoside phosphoramidate (a ProTide) have found utility as prodrugs. In humans, ProTides can be cleaved by human histidine triad nucleotide binding protein 1 (hHint1) to expose the nucleotide monophosphate. Activation by this route circumvents highly selective nucleoside kinases that limit the use of nucleosides as prodrugs.
View Article and Find Full Text PDFChemically self-assembled nanorings (CSANs) are made of dihydrofolate reductase (DHFR) fusion proteins and have been successfully used in vitro for cellular cargo delivery and cell surface engineering applications. However, CSANs have yet to be evaluated for their in vivo stability, circulation, and tissue distribution. In an effort to evaluate CSANs in vivo, we engineered a site-specifically PEGylated epidermal growth factor receptor (EGFR) targeting DHFR molecules, characterized their self-assembly into CSANs with bivalent methotrexates (bis-MTX), visualized their in vivo tissue localization by microPET/CT imaging, and determined their ex vivo organ biodistribution by tissue-based gamma counting.
View Article and Find Full Text PDFConstruction of heterofunctional proteins is a rapidly emerging area of biotherapeutics. Combining a protein with other moieties, such as a targeting element, a toxic protein or small molecule, and a fluorophore or polyethylene glycol (PEG) group, can improve the specificity, functionality, potency, and pharmacokinetic profile of a protein. Protein farnesyl transferase (PFTase) is able to site-specifically and quantitatively prenylate proteins containing a C-terminal CaaX-box amino acid sequence with various modified isoprenoids.
View Article and Find Full Text PDFSynthetic nucleic acids have shown great potential in the treatment of various diseases. Nevertheless, the selective delivery to a target tissue has proved challenging. The coupling of nucleic acids to targeting peptides, proteins, and antibodies has been explored as an approach for their selective tissue delivery.
View Article and Find Full Text PDFChemically self-assembled antibody nanorings (CSANs) displaying multiple copies of single-chain variable fragments can be prepared from dihydrofolate reductase (DHFR) fusion proteins and bis-methotrexate (bisMTX). We have designed and synthesized a bisMTX chemical dimerizer (bisMTX-NH(2)) that contains a third linker arm that can be conjugated to fluorophores, radiolabels, and drugs. Monovalent, divalent, and higher-order AntiCD3 CSANs were assembled with a fluorescein isothiocyanate (FITC)-labeled bis-methotrexate ligand (bisMTX-FITC) and found to undergo rapid internalization and trafficking by HPB-MLT, a CD3+ T-leukemia cell line, to the early and late endosome and lysosome.
View Article and Find Full Text PDFDihydrofolate reductase single-chain variable fragment (scFv) fusion proteins can be used for the targeted cellular delivery of oligonucleotides, conjugated small molecules, and proteins via labeling of oligonucleotides by bis-methotrexate.
View Article and Find Full Text PDFAntiviral therapies are urgently needed to control emerging flaviviruses such as dengue, West Nile, and yellow fever. Ribavirin (RBV) has shown activity against flaviviruses in cultured cells, but efficacy in animal models has generally been poor. In a preliminary screen of novel, synthetic 1-beta-d-ribofuranosyl-azole analogs, two compounds, 1-beta-d-ribofuranosyl-3-ethynyl-[1,2,4]triazole (ETAR) and 1-beta-d-ribofuranosyl-4-ethynyl-[1,3]imidazole (IM18), significantly reduced the replication of dengue virus serotype 2 (DENV-2) in cultured Vero cells.
View Article and Find Full Text PDFThere are no FDA approved drugs for the treatment of hemorrhagic fever with renal syndrome (HFRS), a serious human illnesses caused by hantaviruses. Clinical studies using ribavirin (RBV) to treat HFRS patients suggest that it provides an improved prognosis when given early in the course of disease. Given the unique antiviral activity of RBV and the lack of other lead scaffolds, we prepared a diverse series of 3-substituted 1,2,4-triazole-beta-ribosides and identified one with antiviral activity, 1-beta-d-ribofuranosyl-3-ethynyl-[1,2,4]triazole (ETAR).
View Article and Find Full Text PDFThe conversion of ribavirin to the monophosphate by adenosine kinase is the rate-limiting step in activation of this broad spectrum antiviral drug. Variation of the 3-substituents in a series of bioisosteric and homologated 1-beta-D-ribofuranosyl-1,2,4-triazoles has marked effects on activity with the human adenosine kinase, and analysis of computational descriptors and binding models offers insight for the design of novel substrates.
View Article and Find Full Text PDF