is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of parasites. The diversity of parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets.
View Article and Find Full Text PDFCurr Opin Microbiol
December 2023
The cell division cycle of T. gondii is driven by cyclically expressed ApiAP2 transcription factors (AP2s) that promote gene sets (regulons) associated with specific biological functions. AP2s drive other AP2s, thereby propelling the progressive gene expression waves defining the lytic cycle.
View Article and Find Full Text PDFUnlabelled: is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of parasites. The diversity of parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets.
View Article and Find Full Text PDFAlkanes are widespread in the ocean, and is one of the most ubiquitous alkane-degrading bacteria in the marine ecosystem. Small RNAs (sRNAs) are usually at the heart of regulatory pathways, but sRNA-mediated alkane metabolic adaptability still remains largely unknown due to the difficulties of identification. Here, differential RNA sequencing (dRNA-seq) modified with a size selection (~50-nt to 500-nt) strategy was used to generate high-resolution sRNAs profiling in the model species B-5 under alkane (-hexadecane) and non-alkane (acetate) conditions.
View Article and Find Full Text PDF