Motivation: The use of single-cell methods is expanding at an ever-increasing rate. While there are established algorithms that address cell classification, they are limited in terms of cross platform compatibility, reliance on the availability of a reference dataset and classification interpretability. Here, we introduce Pollock, a suite of algorithms for cell type identification that is compatible with popular single-cell methods and analysis platforms, provides a set of pretrained human cancer reference models, and reports interpretability scores that identify the genes that drive cell type classifications.
View Article and Find Full Text PDF