Introduction: Antimicrobial resistance and free radical-mediated oxidative stress and inflammation involved in many pathological processes have become treatment challenges. One strategy is to search for antimicrobial and antioxidant ingredients from natural aromatic plants. This study established a rapid and high-throughput effect-component analysis method to screen active ingredients from Ligusticum chuanxiong essential oil (CXEO).
View Article and Find Full Text PDFMultiple van der Waals (vdW) gaps invoke abundant opportunities for contriving artificial architectures and tailoring desired properties via the intercalation route beyond the reach of conventional concepts. Intriguingly, the electrochemical intercalation strategy can precisely and reversibly tune the intercalation stage of charged functional species. This study presents a valid structural editing protocol facilitated by electrochemical intercalation to engineer MXene interlayers, ultimately incorporating in situ constructed carbon nanotube (CNT) electric bridges for enhanced ion storage and transport pathways.
View Article and Find Full Text PDFCombination therapy is increasingly favored by pharmaceutical companies and researchers as an effective way to quickly discover new drugs with excellent efficacy, especially in the treatment of complex diseases. Previously, we successfully developed a computational screening method to identify such combinations, although it fell short in elucidating their synergistic mechanisms. In this work, we have transitioned to a highest single agent (HSA) synergy model for network screening, which streamlines the discovery of promising combinations and facilitates the investigation of their synergistic effects.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Electrochemical formic acid oxidation reaction (FAOR) is a pivotal model for understanding organic fuel oxidation and advancing sustainable energy technologies. Here, we present mechanistic insights into a novel molecular-like iridium catalyst (Ir-N-C) for FAOR. Our studies reveal that isolated sites facilitate a preferential dehydrogenation pathway, circumventing catalyst poisoning and exhibiting high inherent activity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Electrocatalytic nitrate reduction reaction (NO RR) is an important route for sustainable NH synthesis and environmental remediation. Metal-organic frameworks (MOFs) are one family of promising NO RR electrocatalysts, however, there is plenty of room to improve in their performance, calling for new design principles. Herein, a MOF-on-MOF heterostructured electrocatalyst with interfacial dual active sites and build-in electric field is fabricated for efficient NO RR to NH production.
View Article and Find Full Text PDFAs one of the potential catalysts, disordered solid solution alloys can offer a wealth of catalytic sites. However, accurately evaluating their activity localization structure and overall activity from each individual site remains a formidable challenge. Herein, an approach based on density functional theory and machine learning was used to obtain a large number of sites of the Pt-Ru alloy as the model multisite catalyst for the hydrogen evolution reaction.
View Article and Find Full Text PDFIn recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible.
View Article and Find Full Text PDFDeveloping highly efficient, selective and low-overpotential electrocatalysts for carbon dioxide (CO) reduction is crucial. This study reports an efficient Ni single-atom catalyst coordinated with pyrrolic nitrogen and pyridinic nitrogen for CO reduction to carbon monoxide (CO). In flow cell experiments, the catalyst achieves a CO partial current density of 20.
View Article and Find Full Text PDFSelective elimination of senescent cells (senolysis) has become a promising therapeutic strategy for the management of chronic renal failure (CRF), but the senolytic molecular pathways towards CRF therapy are limited. Here, we present for the first time a senescence-associated β-galactosidase (SA-β-gal) activatable theragnostic prodrug strategy to pertinently and effectively treat CRF in mice with the aid of fluorescence-guided senolysis. The signs of premature senescence, including the overexpression of β-gal, have been found in kidneys of mice with CRF, making this enzyme particularly suitable as a trigger of prodrugs for CRF therapy.
View Article and Find Full Text PDFEnhancing activity and stability of iridium- (Ir-) based oxygen evolution reaction (OER) catalysts is of great significance in practice. Here, we report a vacancy-rich nickel hydroxide stabilized Ir single-atom catalyst (Ir-Ni(OH)), which achieves long-term OER stability over 260 h and much higher mass activity than commercial IrO in alkaline media. In situ X-ray absorption spectroscopy analysis certifies the obvious structure reconstruction of catalyst in OER.
View Article and Find Full Text PDFCombinatorial drug therapy has attracted substantial attention as an emerging strategy for the treatment of diseases with complex pathological mechanisms. We previously developed a potentially universal computational screening approach for combination drugs and used this approach to successfully identify some beneficial combinations for the treatment of heart failure. Herein, this screening approach was used to identify novel combination drugs for the treatment of epilepsy in an approved drug library.
View Article and Find Full Text PDFRuthenium (Ru)-based electrocatalysts as platinum (Pt) alternatives in catalyzing hydrogen evolution reaction (HER) are promising. However, achieving efficient reaction processes on Ru catalysts is still a challenge, especially in alkaline media. Here, the well-dispersed Ru nanoparticles with adjacent Ru single atoms on carbon substrate (Ru -NC) is demonstrated to be a superb electrocatalyst for alkaline HER.
View Article and Find Full Text PDFOxid Med Cell Longev
January 2022
The roots of are a kind of Chinese herb with homology of medicine and food. This is the first report showing the property of the extract of roots (HLB01) to extend the lifespan as well as promote the healthy parameters in (). For doxorubicin- (Doxo-) induced premature aging in adult mice, HLB01 counteracted the senescence-associated biomarkers, including P21 and H2AX.
View Article and Find Full Text PDF