Publications by authors named "Sichul Lee"

Sorghum () is a gluten-free supercrop with a high content of phenolic compounds, along with anti-nutrient factors such as tannin that limit its use in food. In this study, we conducted solid-state fermentation for sorghum with to reduce the tannin content and value-added sorghum by enhancing biological properties. The results showed that fermented sorghum had 1.

View Article and Find Full Text PDF

Flavonoids are prevalent plant secondary metabolites with a broad range of biological activities. Their antioxidant, anti-inflammatory, and anti-cancer activities make flavonoids widely useful in a variety of industries, including the pharmaceutical and health food industries. However, many flavonoids occur at only low concentrations in plants, and they are difficult to synthesize chemically due to their structural complexity.

View Article and Find Full Text PDF

Various bio-based recombinant proteins have been produced for industrial, medical, and research purposes. Plants are potential platforms for recombinant protein production because of several advantages. Therefore, establishing a system with high target gene expression to compensate for the low protein yield of plant systems is crucial.

View Article and Find Full Text PDF

Plants monitor day length and memorize changes in temperature signals throughout the day, creating circadian rhythms that support the timely control of physiological and metabolic processes. The () transcription factors are known as master regulators for the acquisition of cold stress tolerance, whereas () is involved in plant adaptation to heat stress through thermomorphogenesis. Recent studies have shown that circadian clock genes control plant responses to temperature.

View Article and Find Full Text PDF
Article Synopsis
  • Nicotianamine (NA) is synthesized by NA synthase (NAS) in rice, which helps in metal chelation and maintaining metal balance.
  • Researchers created a transgenic rice plant by activating two specific genes, resulting in significantly higher concentrations of Fe and Zn in both shoots and roots compared to wild type (WT) plants.
  • The transgenic plants also demonstrated improved growth in high pH conditions and greater resistance to excess metals, with dramatically increased NA and deoxymugineic acid levels in the seeds.
View Article and Find Full Text PDF

Iron (Fe) and zinc (Zn) are essential micronutrients needed by virtually all living organisms, including plants and humans, for proper growth and development. Due to its capacity to easily exchange electrons, Fe is important for electron transport in mitochondria and chloroplasts. Fe is also necessary for chlorophyll synthesis.

View Article and Find Full Text PDF

Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles.

View Article and Find Full Text PDF

Zinc and iron are essential micronutrients for plant growth, and their homeostasis must be tightly regulated. Previously, it has been shown that Zinc-Induced Facilitator 1 (ZIF1) is involved in basal Zn tolerance by controlling the vacuolar storage of nicotianamine (NA). However, knowledge of the functional roles of two ZIF1 paralogs, ZIF-LIKE1 (ZIFL1) and ZIFL2, in metal homeostasis remains limited.

View Article and Find Full Text PDF

Leaf senescence, which is the last developmental phase of plant growth, is controlled by multiple genetic and environmental factors. Leaf yellowing is a visual indicator of senescence due to the loss of the green pigment chlorophyll. During senescence, the methodical disassembly of macromolecules occurs, facilitating nutrient recycling and translocation from the sink to the source organs, which is critical for plant fitness and productivity.

View Article and Find Full Text PDF

Increased grain yield will be critical to meet the growing demand for food, and could be achieved by delaying crop senescence. Here, via quantitative trait locus (QTL) mapping, we uncover the genetic basis underlying distinct life cycles and senescence patterns of two rice subspecies, indica and japonica. Promoter variations in the Stay-Green (OsSGR) gene encoding the chlorophyll-degrading Mg-dechelatase were found to trigger higher and earlier induction of OsSGR in indica, which accelerated senescence of indica rice cultivars.

View Article and Find Full Text PDF

Nitrogen (N) is a major limiting factor affecting crop yield in unfertilized soil. Thus, cultivars with a high N use efficiency (NUE) and good grain protein content (GPC) are needed to fulfill the growing food demand and to reduce environmental burden. This is especially true for rice (Oryza sativa L.

View Article and Find Full Text PDF

Nitrogen (N) is a major factor for plant development and productivity. However, the application of nitrogenous fertilizers generates environmental and economic problems. To cope with the increasing global food demand, the development of rice varieties with high nitrogen use efficiency (NUE) is indispensable for reducing environmental issues and achieving sustainable agriculture.

View Article and Find Full Text PDF

Internode elongation is one of the key agronomic traits determining a plant's height and biomass. However, our understanding of the molecular mechanisms controlling internode elongation is still limited in crop plant species. Here, we report the functional identification of an atypical basic helix-loop-helix transcription factor () through gain-of-function studies using overexpression () and activation tagging () lines of rice.

View Article and Find Full Text PDF

Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice.

View Article and Find Full Text PDF

Iron (Fe) and zinc (Zn) are essential micronutrients required for proper development in both humans and plants. Rice ( L.) grains are the staple food for nearly half of the world's population, but a poor source of metals such as Fe and Zn.

View Article and Find Full Text PDF

Flag leaves (FL) and second leaves (SL) in rice show differential aging patterns during monocarpic senescence. Coordination of aging programs between FL and SL is important for grain yield and quality. However, the molecular bases for differential aging programs between FL and SL have not been systematically explored in rice.

View Article and Find Full Text PDF

Because micronutrients in human diets ultimately come from plant sources, malnutrition of essential minerals is a significant public health concern. By increasing the expression of nicotianamine synthase (NAS), we fortified the level of bioavailable iron in rice seeds. Activation of iron deficiency-inducible OsNAS2 resulted in a rise in Fe content (3.

View Article and Find Full Text PDF

Graminaceous plants release ferric-chelating phytosiderophores that bind to iron. These ferric-phytosiderophore complexes are transported across the plasma membrane by a protein produced from Yellow Stripe 1 (YS1). Here, we report the characterization of OsYSL16, one of the YS1-like genes in rice.

View Article and Find Full Text PDF

We generated rice lines with increased content of nicotianamine (NA), a key ligand for metal transport and homeostasis. This was accomplished by activation tagging of rice nicotianamine synthase 2 (OsNAS2). Enhanced expression of the gene resulted in elevated NA levels, greater Zn accumulations and improved plant tolerance to a Zn deficiency.

View Article and Find Full Text PDF

Zinc is an essential micronutrient for several physiological and biochemical processes. To investigate its transport in rice, we characterized OsZIP8, a rice ZIP (Zrt, Irt-like Protein) gene that is strongly up-regulated in shoots and roots under Zn deficiency. OsZIP8 could complement the growth defect of Zn-uptake yeast mutant.

View Article and Find Full Text PDF

Zinc is essential for normal plant growth and development. To understand its transport in rice, we characterized OsZIP5, which is inducible under Zn deficiency. OsZIP5 complemented the growth defect of a yeast Zn-uptake mutant, indicating that OsZIP5 is a Zn transporter.

View Article and Find Full Text PDF

The most widespread dietary problem in the world is mineral deficiency. We used the nicotianamine synthase (NAS) gene to increase mineral contents in rice grains. Nicotianamine (NA) is a chelator of metals and a key component of metal homeostasis.

View Article and Find Full Text PDF

Cadmium (Cd) is a widespread soil pollutant; thus, the underlying molecular controls of plant Cd tolerance are of substantial interest. A screen for wheat (Triticum aestivum) genes that confer Cd tolerance to a Cd hypersensitive yeast strain identified Heat shock transcription factor A4a (HsfA4a). Ta HsfA4a is most similar to the class A4 Hsfs from monocots.

View Article and Find Full Text PDF

Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe(3+); these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency.

View Article and Find Full Text PDF

Uptake and translocation of micronutrients are essential for plant growth. These micronutrients are also important food components. We generated transgenic rice plants over-expressing OsIRT1 to evaluate its functional roles in metal homeostasis.

View Article and Find Full Text PDF