Mesenchymal stem cells (MSCs) are implicated in the bone-forming process during fracture repair. Benzo[a]pyrene (BaP)-a cigarette smoke component and powerful motivator of the aryl hydrocarbon receptor (Ahr)-unfavorably influences bone condition and osteoblast differentiation. The first thing we noticed decreases self-renewal and differentiation of human bone marrow mesenchymal stem (hBM-MSCs) from smokers and activates Ahr signaling in MSCs by up-regulating the Ahr target gene cytochrome P450 (CYP) 1B1 expression.
View Article and Find Full Text PDFBackground: Smokers with persistent cough and sputum production (chronic bronchitis [CB]) represent a distinct clinical phenotype, consistently linked to negative clinical outcomes. However, the mechanistic link between physiologic impairment, dyspnea, and exercise intolerance in CB has not been studied, particularly in those with mild airway obstruction. We, therefore, compared physiologic abnormalities during rest and exercise in CB to those in patients without symptoms of mucus hypersecretion (non-CB) but with similar mild airway obstruction.
View Article and Find Full Text PDFThe purpose of this study was to determine if a dissociation existed between respiratory drive, as estimated by diaphragmatic electromyography (EMGdi), and its pressure-generating capacity during exercise in mild chronic obstructive pulmonary disease (COPD) and whether this, if present, had negative sensory consequences. Subjects meeting spirometric criteria for mild COPD (n=16) and age and sex-matched controls (n=16) underwent detailed pulmonary function testing and a symptom limited cycle test while detailed ventilatory, sensory and respiratory mechanical responses were measured. Compared with controls, subjects with mild COPD had greater ventilatory requirements throughout submaximal exercise.
View Article and Find Full Text PDFRationale: It is not known if abnormal dynamic respiratory mechanics actually limit exercise in patients with mild chronic obstructive pulmonary disease (COPD). We reasoned that failure to increase peak ventilation and Vt in response to dead space (DS) loading during exercise would indicate true ventilatory limitation to exercise in mild COPD.
Objectives: To compare the effects of DS loading during exercise on ventilation, breathing pattern, operating lung volumes, and dyspnea intensity in subjects with mild symptomatic COPD and age- and sex-matched healthy control subjects.