Tibial fractures are common long bone injuries requiring effective monitoring for optimal healing. Osteoprotegerin (OPG), as a key marker of bone formation, is closely related to the degree of fracture healing. However, existing detection methods have certain limitations in sensitivity and specificity.
View Article and Find Full Text PDFExcessive melanogenesis leads to hyperpigmentation-related cosmetic problems. UV exposure increases oxidative stress, which promotes melanogenesis-related signal pathways such as the PKA, microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2) pathways. Glycine is a source of endogenous antioxidants, including glutathione.
View Article and Find Full Text PDFSurface phonon polaritons (SPhPs) originate from the coupling of mid-IR photons and optical phonons, generating evanescent waves along the polar dielectric surface. The emergence of SPhPs gives rise to a phase of quantum matter that facilitates long-range energy transfer (100s μm-scale). Albeit of the recent experimental progress to observe the enhanced thermal conductivity of polar dielectric nanostructures mediated by SPhPs, the potential mechanism to present the high thermal conductivity beyond the Landauer limit has not been addressed.
View Article and Find Full Text PDFThree nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P]) cation paired with different anions, bis(mandelato)borate ([BMB]), bis(oxalato)borate ([BOB]), and bis(salicylato)borate ([BScB]). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration.
View Article and Find Full Text PDFCommercial (protiated) samples of the "green" and biodegradable bioester 2-ethylhexyl laurate (2-EHL) were mixed with D-2-EHL synthesized by hydrothermal deuteration, with the mixtures demonstrating bulk structuring in small-angle neutron scattering measurements. Analysis in a polymer scattering framework yielded a radius of gyration () of 6.5 Å and a Kuhn length (alternatively described as the persistence length or average segment length) of 11.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2023
The structure and interaction of ionic liquids (ILs) influence their interfacial composition, and their arrangement (i.e., electric double-layer (EDL) structure), can be controlled by an electric field.
View Article and Find Full Text PDFA classical thermal source, such as an incandescent filament, radiates according to Planck's law. The feasibility of super-Planckian radiation has been investigated with sub-wavelength-sized sources in the last decade. In such sources, a crystal-dependent coupling of photons and optical phonons is possible at thermal energies corresponding to that at room temperature.
View Article and Find Full Text PDFA series of 19 ionic liquids (ILs) based on phosphonium and imidazolium cations of varying alkyl-chain lengths with the orthoborate anions bis(oxalato)borate [BOB] , bis(mandelato)borate, [BMB] and bis(salicylato)borate, [BScB] , are synthesized and studied using small-angle neutron scattering (SANS). All measured systems display nanostructuring, with 1-methyl-3-n-alkyl imidazolium-orthoborates forming clearly bicontinuous L spongelike phases when the alkyl chains are longer than C (hexyl). L phases are fitted using the Teubner and Strey model, and diffusely-nanostructured systems are primarily fitted using the Ornstein-Zernicke correlation length model.
View Article and Find Full Text PDFChemosphere
September 2022
The economic and social future of nanotechnology depends on our ability and manufacture nanomaterials that avoid potential toxicity, by identifying them before they are made, used and released into the environment. Safety-by-design is a framework for including these issues at an early stage of the development process, but balancing multiple nanoparticle properties and selection criteria remains challenging. Based on a synthetic data set of over 19,000 possible sunscreen product specifications, we have used multi-target machine learning to predict the corresponding size, shape, concentration and polytype of titania nanoparticle additives.
View Article and Find Full Text PDFOxidation-reduction-absorption based on sulfite is a promising process for simultaneous removal of NO and SO. However, excessive oxidation of sulfite and competitive absorption between NO and SO limit its application. A matching strategy between antioxidants and alkaline agents has been proposed to solve these problems and enhance the absorption process.
View Article and Find Full Text PDFOxidation of sulfite and competitive absorption existed in NaSO solution for simultaneous removal of NO and SO, inhibited the long-term high-efficiency when used for practical applications. A matching strategy was developed to solve these problems. Antioxidants combination was used to retard the oxidation of antioxidant and enhance inhibition of S(IV) (tetravalent sulfur) oxidation.
View Article and Find Full Text PDFTwo-dimensional layered black phosphorus is an ambipolar narrow bandgap semiconductor with excellent electronic properties. A heterostructure can be formed when black phosphorus is combined with a narrow bandgap n-type semiconductor, which can feasibly be modulated throughout the entire bandgap for both materials in momentum space, creating unique quantum tunneling devices. In this work, a black phosphorus and narrow bandgap n-type indium arsenide heterojunction is created with a broken-gap band alignment, forming two interband tunneling windows that can be modulated electrostatically.
View Article and Find Full Text PDFMetal-semiconductor contact has been the performance limiting problem for electronic devices and also dictates the scaling potential for future generation devices based on novel channel materials. Two-dimensional semiconductors beyond graphene, particularly few layer black phosphorus, have attracted much attention due to their exceptional electronic properties such as anisotropy and high mobility. However, due to its ultrathin body nature, few layer black phosphorus-metal contact behaves differently than conventional Schottky barrier (SB) junctions, and the mechanisms of its carrier transport across such a barrier remain elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2017
Because of their wide bandgap and ultrathin body properties, two-dimensional materials are currently being pursued for next-generation electronic and optoelectronic applications. Although there have been increasing numbers of studies on improving the performance of MoS field-effect transistors (FETs) using various methods, the dielectric interface, which plays a decisive role in determining the mobility, interface traps, and thermal transport of MoS FETs, has not been well explored and understood. In this article, we present a comprehensive experimental study on the effect of high-k dielectrics on the performance of few-layer MoS FETs from 300 to 4.
View Article and Find Full Text PDFCircular birefringence (CB) is generally responsible for only a small perturbation to the state of light polarization in crystals that also exhibit linear birefringence (LB). As such, the magnetoelectric tensor of gyration, which gives rise to CB and optical activity, is less well determined than the electric permittivity tensor in optical models of the Mueller matrix. To visualize the effect of the magnetoelectric tensor on polarimetric measurements, reported here are experimental mappings of the Mueller matrix and of the CB in a new chiral crystal with accidental null LB at an accessible optical frequency.
View Article and Find Full Text PDFMulti-layer black phosphorus has emerged as a strong candidate owing to its high carrier mobility with most of the previous research work focused on its p-type properties. Very few studies have been performed on its n-type electronic characteristics which are important not only for the complementary operation for logic, but also crucial for understanding the carrier transport through the metal-black phosphorus junction. A thorough understanding and proper evaluation of the performance potential of both p- and n-types are highly desirable.
View Article and Find Full Text PDFMagnetoresistance, the modulation of resistance by magnetic fields, has been adopted and continues to evolve in many device applications including hard-disk, memory, and sensors. Magnetoresistance in nonmagnetic semiconductors has recently raised much attention and shows great potential due to its large magnitude that is comparable or even larger than magnetic materials. However, most of the previous work focus on two terminal devices with large dimensions, typically of micrometer scales, which severely limit their performance potential and more importantly, scalability in commercial applications.
View Article and Find Full Text PDFHigh-performance MoS2 transistors scaled down to 100 nm are studied at various temperatures down to 20 K, where a highest drive current of 800 μA μm(-1) can be achieved. Extremely low electrical noise of 2.8 × 10(-10) μm(2) Hz(-1) at 10 Hz is also achieved at room temperature.
View Article and Find Full Text PDFA molecular compass-like behaviour is found in a perovskite-type cage compound (HIm)2[KCo(CN)6] (HIm = imidazolium cation). The dynamic changes in the HIm cation from the static to rotating state along with the rearrangement of the host cage result in switchable and anisotropic dielectric constants.
View Article and Find Full Text PDFWe showed here that red light can be used to tune the self-assembly of amphiphilic diselenide-containing block copolymers, via the production of singlet oxygen in the presence of chromophores such as porphyrin derivatives. Furthermore, red light can be used to trigger the release of encapsulated cargo in polymeric micelles.
View Article and Find Full Text PDFWe have prepared a UV-responsive polymeric superamphiphile, formed by a malachite green derivative and the double hydrophilic block copolymer methoxy-poly(ethylene glycol)(114)-block-poly(l-lysine hydrochloride)(200) (PEG-b-PLKC) on the basis of electrostatic interactions. The malachite green derivative undergoes photo-ionization upon UV irradiation, which makes it more hydrophilic, resulting in changes in the self-assembly behavior of the polymeric superamphiphile. For this reason, the polymeric superamphiphile originally self-assembles to form sheetlike aggregates, which disassemble after UV irradiation because of the increased solubility of the malachite green derivative.
View Article and Find Full Text PDF