Magnetic force microscopy (MFM) is a well-established technique in scanning probe microscopy that allows for the imaging of magnetic samples with a spatial resolution of tens of nm and stray fields down to the mT range. The spatial resolution and field sensitivity can be significantly improved by measuring in vacuum conditions. This improvement originates from the higher quality-factor (Q-factor) of the cantilever's oscillation in vacuum compared to ambient conditions.
View Article and Find Full Text PDFMagneto-optical indicator films (MOIFs) are a very useful tool for direct studies of the spatial distribution of magnetic fields and the magnetization processes in magnetic materials and industrial devices such as magnetic sensors, microelectronic components, micro-electromechanical systems (MEMS), and others. The ease of application and the possibility for direct quantitative measurements in combination with a straightforward calibration approach make them an indispensable tool for a wide spectrum of magnetic measurements. The basic sensor parameters of MOIFs, such as a high spatial resolution down to below 1 μm combined with a large spatial imaging range of up to several cm and a wide dynamic range from 10 μT to over 100 mT, also foster their application in various areas of scientific research and industry.
View Article and Find Full Text PDFWe experimentally study the thermoelectrical signature of individual skyrmions in chiral Pt/Co/Ru multilayers. Using a combination of controlled nucleation, single skyrmion annihilation, and magnetic field dependent measurements the thermoelectric signature of individual skyrmions is characterized. The observed signature is explained by the anomalous Nernst effect of the skyrmion's spin structure.
View Article and Find Full Text PDFA new metrological large range magnetic force microscope (Met. LR-MFM) has been developed. In its design, the scanner motion is measured by using three laser interferometers along the x, y, and z axes.
View Article and Find Full Text PDFThe magnetic properties of monodisperse FeO-Fe3O4 nanoparticles with different mean sizes and volume fractions of FeO synthesized via decomposition of iron oleate were correlated to their crystallographic and phase compositional features by exploiting high resolution transmission electron microscopy, X-ray diffraction, Mössbauer spectroscopy and field and zero field cooled magnetization measurements. A model describing the phase transformation from a pure Fe3O4 phase to a mixture of Fe3O4, FeO and interfacial FeO-Fe3O4 phases as the particle size increases was established. The reduced magnetic moment in FeO-Fe3O4 nanoparticles was attributed to the presence of differently oriented Fe3O4 crystalline domains in the outer layers and paramagnetic FeO phase.
View Article and Find Full Text PDFThe quantitative measurement of the magnetization of individual magnetic nanoparticles (MNPs) using magnetic force microscopy (MFM) is described. Quantitative measurement is realized by calibration of the MFM signal using an MNP reference sample with traceably determined magnetization. A resolution of the magnetic moment of the order of 10(-18) A m(2) under ambient conditions is demonstrated, which is presently limited by the tip's magnetic moment and the noise level of the instrument.
View Article and Find Full Text PDF