The role of endothelial cells in promoting cancer cell extravasation to the brain during the interaction of cancer cells with the vasculature is not well characterised. We show that brain endothelial cells activate EGFR signalling in triple-negative breast cancer cells with propensity to metastasise to the brain. This activation is dependent on soluble factors secreted by brain endothelial cells, and occurs via the RAC1 GEF DOCK4, which is required for breast cancer cell extravasation to the brain in vivo.
View Article and Find Full Text PDFCyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have revolutionized the treatment of hormone-positive metastatic breast cancers (mBCs). They are currently established as standard therapies in combination with endocrine therapy as first- and second-line systemic treatment options for both endocrine-sensitive and endocrine-resistant mBC populations. In the first-line metastatic setting, the median progression-free survival for the three currently approved CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, with aromatase inhibitors is greater than 2 years (palbociclib 27.
View Article and Find Full Text PDFLoss-of-function mutations in the RB1 tumour suppressor are key drivers in cancer, including osteosarcoma. RB1 loss-of-function compromises genome-maintenance and hence could yield vulnerability to therapeutics targeting such processes. Here we demonstrate selective hypersensitivity to clinically-approved inhibitors of Poly-ADP-Polymerase1,2 inhibitors (PARPi) in RB1-defective cancer cells, including an extended panel of osteosarcoma-derived lines.
View Article and Find Full Text PDFCellular senescence is a stable cell cycle arrest that normal cells undergo after a finite number of divisions, in response to a variety of intrinsic and extrinsic stimuli. Although senescence is largely established and maintained by the p53/p21 and pRB/p16 tumour suppressor pathways, the downstream targets responsible for the stability of the growth arrest are not known. We have employed a stable senescence bypass assay in conditionally immortalised human breast fibroblasts (CL3) to investigate the role of the DREAM complex and its associated components in senescence.
View Article and Find Full Text PDFTo avoid replicative senescence or telomere-induced apoptosis, cancers employ telomere maintenance mechanisms (TMMs) involving either the upregulation of telomerase or the acquisition of recombination-based alternative telomere lengthening (ALT). The choice of TMM may differentially influence cancer evolution and be exploitable in targeted therapies. Here, we examine TMMs in a panel of 17 osteosarcoma-derived cell lines, defining three separate groups according to TMM and the length of telomeres maintained.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFDeregulation of cyclin-dependent kinases 4 and 6 (CDK4/6) is highly prevalent in cancer; yet, inhibitors against these kinases are currently used only in restricted tumour contexts. The extent to which cancers depend on CDK4/6 and the mechanisms that may undermine such dependency are poorly understood. Here, we report that signalling engaging the MET proto-oncogene receptor tyrosine kinase/focal adhesion kinase (FAK) axis leads to CDK4/6-independent CDK2 activation, involving as critical mechanistic events loss of the CDKI p21 and gain of its regulator, the ubiquitin ligase subunit SKP2.
View Article and Find Full Text PDFMethods Mol Biol
April 2018
High-content imaging connects the information-rich method of microscopy with the systematic objective principles of software-driven analysis. Suited to automation and, therefore, considerable scale-up of study size, this approach can deliver multiparametric data over cell populations or at the level of the individual cell and has found considerable utility in reverse genetic and pharmacological screens. Here we present a method to screen small interfering RNA (siRNA) libraries allowing subsequent observation of the impact of each knockdown on two interlinked, high-content, G1-/S-phase cell cycle transition assays related to cyclin-dependent kinase (CDK) 2 activity.
View Article and Find Full Text PDFLoss of retinoblastoma protein (RB1) function is a major driver in cancer development. We have recently reported that, in addition to its well-documented functions in cell cycle and fate control, RB1 and its paralogs have a novel role in regulating DNA repair by non-homologous end joining (NHEJ). Here we summarize our findings and present mechanistic hypotheses on how RB1 may support the DNA repair process and the therapeutic implications for patients who harbor RB1-negative cancers.
View Article and Find Full Text PDFDeficiencies in DNA double-strand break (DSB) repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1) is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ). Support of cNHEJ involves a mechanism independent of RB1's cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6.
View Article and Find Full Text PDFAdvances in understanding the control mechanisms governing the behavior of cells in adherent mammalian tissue culture models are becoming increasingly dependent on modes of single-cell analysis. Methods which deliver composite data reflecting the mean values of biomarkers from cell populations risk losing subpopulation dynamics that reflect the heterogeneity of the studied biological system. In keeping with this, traditional approaches are being replaced by, or supported with, more sophisticated forms of cellular assay developed to allow assessment by high-content microscopy.
View Article and Find Full Text PDFThe retinoblastoma susceptibility protein RB1 is a key regulator of cell proliferation and fate. RB1 operates through nucleating the formation of multi-component protein complexes involved in the regulation of gene transcription, chromatin structure and protein stability. Phosphorylation of RB1 by cyclin-dependent kinases leads to conformational alterations and inactivates the capability of RB1 to bind partner protein.
View Article and Find Full Text PDFBackground: The tripartite motif family protein 27 (TRIM27) is a transcriptional repressor that interacts with, and attenuates senescence induction by, the retinoblastoma-associated protein (RB1). High expression of TRIM27 was noted in several human cancer types including breast and endometrial cancer, where elevated TRIM27 expression predicts poor prognosis. Here, we investigated the role of TRIM27 expression in cancer development.
View Article and Find Full Text PDFDNA damage activates checkpoint controls which block progression of cells through the division cycle. Several different checkpoints exist that control transit at different positions in the cell cycle. A role for checkpoint activation in providing resistance of cells to genotoxic anticancer therapy, including chemotherapy and ionizing radiation, is widely recognized.
View Article and Find Full Text PDFHuman cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail.
View Article and Find Full Text PDFCyclin/cyclin-dependent kinase (CDK) complexes are critical regulators of cellular proliferation. A complex network of regulatory mechanisms has evolved to control their activity, including activating and inactivating phosphorylation of the catalytic CDK subunit and inhibition through specific regulatory proteins. Primate herpesviruses, including the oncogenic Kaposi sarcoma herpesvirus, encode cyclin D homologues.
View Article and Find Full Text PDFThe expression of protein-encoding genes is a complex process culminating in the production of mature mRNA and its translation by the ribosomes. The production of a mature mRNA involves an intricate series of processing steps. The majority of eukaryotic protein-encoding genes contain intron sequences that disrupt the protein-encoding frame, and hence have to be removed from immature mRNA prior to translation into protein.
View Article and Find Full Text PDFChromosome loss or gain is associated with a large number of solid cancers, providing genomic plasticity and thus adaptability to cancer cells. Numerical centrosome abnormalities arising from centrosome over-duplication or failed cytokinesis are a recognized cause of aneuploidy. In higher eukaryotic cells, the centrosome duplicates only once per cell cycle to ensure the formation of a bipolar mitotic spindle that orchestrates the balanced distribution of the sister chromatids to the respective daughter cells.
View Article and Find Full Text PDFThe retinoblastoma susceptibility protein, Rb, has a key role in regulating cell-cycle progression via interactions involving the central "pocket" and C-terminal regions. While the N-terminal domain of Rb is dispensable for this function, it is nonetheless strongly conserved and harbors missense mutations found in hereditary retinoblastoma, indicating that disruption of its function is oncogenic. The crystal structure of the Rb N-terminal domain (RbN), reveals a globular entity formed by two rigidly connected cyclin-like folds.
View Article and Find Full Text PDFHereditary predisposition to retinoblastoma (RB) is caused by germline mutations in the retinoblastoma 1 (RB1) gene and transmits as an autosomal dominant trait. In the majority of cases disease develops in greater than 90% of carriers. However, reduced penetrance with a large portion of disease-free carrier is seen in some families.
View Article and Find Full Text PDFThe protein kinase Chk2 (checkpoint kinase 2) is a major effector of the replication checkpoint. Chk2 activation is initiated by phosphorylation of Thr68, in the serine-glutamine/threonine-glutamine cluster domain (SCD), by ATM. The phosphorylated SCD-segment binds to the FHA domain of a second Chk2 molecule, promoting dimerisation of the protein and triggering phosphorylation of the activation segment/T-loop in the kinase domain.
View Article and Find Full Text PDFBackground: The product of the retinoblastoma-susceptibility gene (pRb) is a substrate for Protein Phosphatase 1 (PP1). At mitotic exit, all three PP1 isoforms, alpha, gamma1 and delta, bind to pRb and dephosphorylate its Ser/Thr sites in a sequential and site-specific way. The pRb-C terminal has been reported to be necessary and sufficient for PP1alpha binding.
View Article and Find Full Text PDFKaposi sarcoma-associated herpes virus (KSHV) encodes a D-like cyclin (K-cyclin) that is thought to contribute to the viral oncogenicity. K-cyclin activates cellular cyclin-dependent kinases (CDK) 4 and 6, generating enzymes with a substrate selectivity deviant from CDK4 and CDK6 activated by D-type cyclins, suggesting different biochemical and biological functions. Here we report the identification of the actin- and calmodulin-binding protein caldesmon (CALD1) as a novel K-cyclin.
View Article and Find Full Text PDF