Publications by authors named "Sibylle Gratt"

A tomographic setup that provides the co-registration of photoacoustic (PA) and ultrasound (US) images is presented. For pulse-echo US-tomography laser-induced broadband plane ultrasonic waves are produced by illuminating an optically absorbing target with a short near-infrared laser pulse. Part of the same pulse is frequency doubled and used for the generation of PA waves within the object of interest.

View Article and Find Full Text PDF

A setup is proposed that provides perfectly co-registered photoacoustic (PA) and ultrasound (US) section images. Photoacoustic and ultrasound backscatter signals are generated by laser pulses coming from the same laser system, the latter by absorption of some of the laser energy on an optically absorbing target near the imaged object. By measuring both signals with the same optical detector, which is focused into the selected section by use of a cylindrical acoustic mirror, the information for both images is acquired simultaneously.

View Article and Find Full Text PDF

A method is proposed that utilizes the advantages of optical ultrasound detection in two-dimensional photoacoustic section imaging, combining an optical interferometer with an acoustic mirror. The concave mirror has the shape of an elliptical cylinder and concentrates the acoustic wave generated around one focal line in the other one, where an optical beam probes the temporal evolution of acoustic pressure. This yields line projections of the acoustic sources at distances corresponding to the time of flight, which, after rotating the sample about an axis perpendicular to the optical detector, allows reconstruction of a section using the inverse Radon transform.

View Article and Find Full Text PDF

A piezoelectric detector with a cylindrical shape is investigated for photoacoustic section imaging. Images are acquired by rotating a sample in front of the cylindrical detector. With its length exceeding the size of the imaging object, it works as an integrating sensor and therefore allows reconstructing section images with the inverse Radon transform.

View Article and Find Full Text PDF

An optical detection setup consisting of a focused laser beam fed into a downstream Fabry-Perot interferometer (FPI) for demodulation of acoustically generated optical phase variations is investigated for its applicability in photoacoustic tomography. The device measures the time derivative of acoustic signals integrated along the beam. Compared to a setup where the detection beam is part of a Mach-Zehnder interferometer, the signal-to-noise ratio of the FPI is lower, but the image quality of the two devices is similar.

View Article and Find Full Text PDF