M. Fischer (Fmed) is a white-rot wood-decaying fungus associated with one of the most important and challenging diseases in vineyards: Esca. To relieve microbial degradation, woody plants, including , use structural and chemical weapons.
View Article and Find Full Text PDF() is the primary Basidiomycota species causing white rot in European vineyards affected by the Esca complex of diseases (ECD). In the last few years, an increasing number of studies have highlighted the importance of reconsidering the role of in ECD etiology, justifying an increase in research interest related to 's biomolecular pathogenetic mechanisms. In the context of the current re-evaluation of the binary distinction (brown vs.
View Article and Find Full Text PDF(Fmed) is one of the main fungal species found in grapevine wood rot, also called "amadou," one of the most typical symptoms of grapevine trunk disease Esca. This fungus is functionally classified as a white-rot, able to degrade all wood structure polymers, i.e.
View Article and Find Full Text PDFEutypa dieback and Esca complex are fungal diseases of grape that cause large economic losses in vineyards. These diseases require, or are enhanced by, fungal consortia growth which leads to the deterioration of the wood tissue in the grapevine trunk; however, pathogenesis and the underlying mechanisms involved in the woody tissue degradation are not understood. We examined the role that the consortia fungal metabolome have in generating oxygen radicals that could potentially play a role in trunk decay and pathogenesis.
View Article and Find Full Text PDFis a fungus associated with some of the Esca complex diseases and responsible for decay in grapevine wood. Its role in the onset of foliar symptoms has recently been reconsidered, mainly after evidence showing a reduction in foliar symptom expression after removal of rotten wood. The study of its degradation pathways has already been approached by other authors, and with this study much information is consolidated.
View Article and Find Full Text PDFIn the last few years, trunk surgery has gained increasing attention as a method to reduce foliar symptoms typical of some of the Esca complex diseases. The technique relies on the mechanical removal of decayed wood by a chainsaw. A study on a 14-year-old Cabernet Sauvignon vineyard was carried out to validate the efficacy of trunk surgery and explore possible explanations behind it.
View Article and Find Full Text PDFLiquid chromatography-diode array screening of the organic extract of the cultures of 13 isolates of the fungus Neofusicoccum parvum, the main causal agent of botryosphaeria dieback of grapevine, showed similar metabolites. One strain was selected for further chemical studies and led to the isolation and characterisation of 13 metabolites. Structures were elucidated through spectroscopic analyses, including one- and two-dimensional NMR and mass spectrometry, and through comparison to literature data.
View Article and Find Full Text PDFStudying grapevine (Vitis vinifera) innate defense mechanisms is a prerequisite to the development of new protection strategies, based on the stimulation of plant signaling pathways to trigger pathogen resistance. Two transcriptional coactivators (VvNPR1.1 and VvNPR1.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
August 2011
The control of grapevine pathogens is a rising concern in Vitis vinifera culture. The current international trend is toward banning chemicals that are highly toxic to the environment and human workers, and adopting tighter regulations. We evaluated the impact of saponins on three kinds of organisms found in grapevine culture.
View Article and Find Full Text PDFGrapevine trunk diseases are very harmful to wine-growing heritage durability because the fungi responsible, by attacking perennial organs, cause at a more or less long-term the death of the vine stock. Esca and BDA are the two main pathogens inducing such decaying diseases. The infection can be diagnosed by the presence in the wood forming tissues of sectorial and/or central necrosis, which revealed itself by brown stripes or canker, and at the foliar level by discoloration and withering.
View Article and Find Full Text PDFLittle is known about the genes expressed during grapevine somatic embryogenesis. Both groups of Somatic Embryogenesis Receptor Kinase (SERK) and Leafy Cotyledon (LEC and L1L) genes seem to play key roles during somatic embryogenesis in various plant species. Therefore, we identified and analysed the sequences of VvSERK and VvL1L (Leafy cotyledon1-Like) genes.
View Article and Find Full Text PDFBackground: Grapevine can be a periclinal chimera plant which is composed at least of two distinct cell layers (L1, L2). When the cell layers of this plant are separated by passage through somatic embryogenesis, regenerated plants could show distinct DNA profiles and a novel phenotype which proved different from that of the parent plant.
Results: Genetically Chardonnay clone 96 is a periclinal chimera plant in which is L1 and L2 cell layers are distinct.