Publications by authors named "Sibu Balan"

XTEN™ is a class of unstructured hydrophilic, biodegradable protein polymers designed to increase the half-lives of therapeutic peptides and proteins. XTEN polymers and XTEN fusion proteins are typically expressed in Escherichia coli and purified by conventional protein chromatography as monodisperse polypeptides of exact length and sequence. Unstructured XTEN polypeptides have hydrodynamic volumes significantly larger than typical globular proteins of similar mass, thus imparting a bulking effect to the therapeutic payloads attached to them.

View Article and Find Full Text PDF

The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines.

View Article and Find Full Text PDF

PEGylation is a clinically proven strategy for increasing the therapeutic efficacy of protein-based medicines. Our approach to site-specific PEGylation exploits the thiol selective chemistry of the two cysteine sulfur atoms from an accessible disulfide. It involves two key steps: (1) disulfide reduction to release the two cystine thiols, and (2) bis-alkylation to give a three-carbon bridge to which PEG is covalently attached.

View Article and Find Full Text PDF

More than 42,000 3D structures of proteins are available on the Internet. We have shown that the chemical insertion of a 3-carbon bridge across the native disulfide bond of a protein or peptide can enable the site-specific conjugation of PEG to the protein without a loss of its structure or function. For success, it is necessary to select an appropriate and accessible disulfide bond in the protein for this chemical modification.

View Article and Find Full Text PDF

PEGylation has turned proteins into important new biopharmaceuticals. The fundamental problems with the existing approaches to PEGylation are inefficient conjugation and the formation of heterogeneous mixtures. This is because poly(ethylene glycol) (PEG) is usually conjugated to nucleophilic amine residues.

View Article and Find Full Text PDF

The covalent conjugation of a functionalized poly(ethylene glycol) (PEG) to multiple nucleophilic amine residues results in a heterogeneous mixture of PEG positional isomers. Their physicochemical, biological, and pharmaceutical properties vary with the site of conjugation of PEG. Yields are low because of inefficient conjugation chemistry and production costs high because of complex purification procedures.

View Article and Find Full Text PDF

Native disulfide bonds in therapeutic proteins are crucial for tertiary structure and biological activity and are therefore considered unsuitable for chemical modification. We show that native disulfides in human interferon alpha-2b and in a fragment of an antibody to CD4(+) can be modified by site-specific bisalkylation of the two cysteine sulfur atoms to form a three-carbon PEGylated bridge. The yield of PEGylated protein is high, and tertiary structure and biological activity are retained.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqo9jgor7a135b1vb6tpkalm4do9ai9da): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once