Publications by authors named "Sibo Ma"

Magnesium stearate (MgSt) and lactose fines are often used as ternary components in carrier-based dry powder inhalers (DPIs) to improve fine particle fraction (FPF), but whether they act synergistically to improve aerosolization performance of DPI formulations is currently less studied. In addition, the applicability of utilizing powder rheological parameters to predict the FPF needs to be further verified. Thus, in this study, using fluticasone propionate (FP) as a model drug, effect of lactose fines addition in 0.

View Article and Find Full Text PDF

Since carrier-based dry powder inhalers (DPIs) suffer from inadequate drug deposition in the lung, an increasing number of marketed products have added magnesium stearate (MgSt) to improve the aerosolization, dispersion, and stability against moisture of DPI. However, for carrier-based DPI, there is a lack of examination of the optimal MgSt content as well as the mixing modality, and there is also a need to verify the applicability of rheological properties to predict the in vitro aerosolization of DPI formulations containing MgSt. Therefore, in this work, DPI formulations were prepared using fluticasone propionate as a model drug and commercial crystalline lactose Respitose® SV003 as a carrier within 1% MgSt content, the effect of MgSt content on the rheological and aerodynamic properties were investigated.

View Article and Find Full Text PDF

Dry powder inhaler (DPI) for pulmonary delivery is currently the primary treatment for asthma and COPD (chronic obstructive pulmonary disease), an increasing number of combined DPIs (containing two or more drugs in one inhaler) have been developed to complement the effect of single DPIs. Based on our previous studies, the rheological properties can be a potential tool used to predict the in vitro lung deposition behavior of DPI formulations. However, it is unknown whether such a prediction model is suitable for combination systems.

View Article and Find Full Text PDF