VO is a promising phase change material offering a large contrast of electric, thermal, and optical properties when transitioning from semiconductor to metallic phase. Here we show that a hybrid metamaterial obtained by proper combination of a VO layer and a nanodisk gold array provides a tunable plasmonic gap resonance in the infrared range. Specifically, we have designed and fabricated a metal-insulator-metal gap resonance by inserting sub-wavelength VO film between a flat gold layer and a gold nanodisk resonator array.
View Article and Find Full Text PDFVanadium dioxide has attracted much interest due to the drastic change of the electrical and optical properties it exhibits during the transition from the semiconductor state to the metallic state, which takes place at a critical temperature of about 68 °C. Much study has been especially devoted to developing advanced fabrication methodologies to improve the performance of VO thin films for phase-change applications in optical devices. Films structural and morphological characterisation is normally performed with expensive and time consuming equipment, as x-ray diffractometers, electron microscopes and atomic force microscopes.
View Article and Find Full Text PDFMetasurfaces tailor electromagnetic confinement at the nanoscale and can be appropriately designed for polarization-dependent light-matter interactions. Adding the asymmetry degree to the desing allows for circular polarizations of opposite handedness to be differently absorbed or emitted, which is of interest in fields spanning from chiral sensing to flat optics. Here, we show that simple, low-cost asymmetric metasurfaces can control Stokes parameters in the transmitted far-field.
View Article and Find Full Text PDFChirality, the lack of mirror symmetry, can be mimicked in nanophotonics and plasmonics by breaking the symmetry in light-nanostructure interaction. Here we report on versatile use of nanosphere lithography for the fabrication of low-cost metasurfaces, which exhibit broadband handedness- and angle-dependent extinction in the near-infrared range, thus offering extrinsic chiro-optical behavior. We measure wavelength and angle dependence of the extinction for four samples.
View Article and Find Full Text PDFPleural mesothelioma is a rare and aggressive cancer that affects the pleura. In recent years, there has been increasing interest and attention in detecting and diagnosing early-stage or precancerous forms of mesothelioma because of its severe prognosis and short life expectancy at the time of diagnosis. Mesothelioma in situ represents a clear opportunity to improve and innovate the diagnostic approach and the multimodality treatment of mesothelioma: the diagnosis of pleural mesothelioma at the 'in-situ phase' means early disease detection and thus paves the way to new possible curable strategies.
View Article and Find Full Text PDFChiral properties of plasmonic metasurfaces, especially related to different absorption of left and right circularly polarized light leading to circular dichroism (CD), are a research hot topic in nanophotonics. There is often a need to understand the physical origin of CD for different chiral metasurfaces, and to get guidelines for the design of structures with optimized and robust CD. In this work, we numerically study CD at normal incidence in square arrays of elliptic nanoholes etched in thin metallic layers (Ag, Au, Al) on a glass substrate and tilted with respect to the symmetry axes.
View Article and Find Full Text PDFZinc oxide-zinc tungstate (ZnO-ZnWO ) is a self-organized eutectic composite consisting of parallel ZnO thin layers (lamellae) embedded in a dielectric ZnWO matrix. The electromagnetic behavior of composite materials is affected not only by the properties of single constituent materials but also by their reciprocal geometrical micro-/nano-structurization, as in the case of ZnO-ZnWO . The light interacting with microscopic structural features in the composite material provides new optical properties, which overcome the possibilities offered by the constituent materials.
View Article and Find Full Text PDFFar infrared radiation (FIR) is emitted by every body at a given temperature, including the human body. FIR ranging between 4-14 μm is considered useful for cell growth, and the human body emits a maximum of infrared (IR) radiation at the wavelength of approximately 9.3 µm.
View Article and Find Full Text PDFLock-in thermography was applied to the measurement of the in-plane thermal diffusivity of three polyethersulfone (PES) textiles characterized by different weaving pattern as well as different mass density of interlacing fibers. The experimental results showed that the in-plane thermal diffusivity in each direction decreased with the increase of the fibers' linear mass density, thus leading to an anisotropic behavior of the thermal diffusivity in the specimen where PES fibers with different density were interlaced. A new theoretical model for the study of the heat diffusion in textiles was specifically developed and, thereafter, employed for the analysis of the experimental results.
View Article and Find Full Text PDFPhotoacoustic signal detection has been used to build a new strategy to determine the mesoscale self-assembly of metal nanoparticles in terms of size distribution and aggregate packing density (metal nanoparticle filling factor). A synergistic approach integrating photoacoustic signal and theoretical studies, validated by conventional light scattering and electron microscopy techniques, allows us to obtain a well-defined morphological interpretation of nanoparticle-based super-aggregates. By pumping light in a complex system, the acousto-thermal effect was listened to, providing information on the aggregation phenomena.
View Article and Find Full Text PDFIn the last years, intense efforts have been made in order to obtain colloidal-based systems capable of pointing out the presence of melamine in food samples. In this work, we reported about the recognition of melamine in aqueous solution, using gold nanoparticles stabilized with 3-mercapto-1-propanesulfonate (AuNPs-3MPS), with the aim of deepening how the recognition process works. AuNPs were synthesized using a wet chemical reduction method.
View Article and Find Full Text PDFHybridization of semiconductor nanostructures with asymmetric metallic layers offers new paths to circular polarization control and chiral properties. Here we study, both experimentally and numerically, chiral properties of GaAs-based nanowires (NWs) which have two out of six sidewalls covered by Au. Sparse ensembles of vertical, free-standing NWs were fabricated by means of lithography-free self-assembled technique on Si substrates and subsequently covered by Au using tilted evaporation.
View Article and Find Full Text PDFWe investigate the possibility of spatially and spectrally controlling the thermal infrared emission by exploitation of the Yagi-Uda antenna design. Hybrid antennas composed of both SiC and Au rods are considered and the contributions of emission from all the elements, at a given equilibrium temperature, are taken into account. We show that the detrimental effect due to thermal emission from the not ideal parasitic elements drastically affect the performances of conventional thermal Au antennas in the 12 µm wavelength range.
View Article and Find Full Text PDFOptical circular dichroism (CD) is an important phenomenon in nanophotonics, that addresses top level applications such as circular polarized photon generation in optics, enantiomeric recognition in biophotonics and so on. Chiral nanostructures can lead to high CD, but the fabrication process usually requires a large effort, and extrinsic chiral samples can be produced by simpler techniques. Glancing angle deposition of gold on GaAs nanowires can (NWs) induces a symmetry breaking that leads to an optical CD response that mimics chiral behavior.
View Article and Find Full Text PDFA detailed structural investigation of the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films deposited on sapphire substrates by pulsed laser deposition was performed by in situ temperature-dependent X-ray diffraction (XRD) measurements. The structural results are correlated with those of infrared radiometry measurements in the SWIR (2.5-5 μm) and LWIR (8-10.
View Article and Find Full Text PDFChiral optical response is an inherent property of molecules and nanostructures, which cannot be superimposed on their mirror images. In specific cases, optical chirality can be observed also for symmetric structures. This so-called extrinsic chirality requires that the mirror symmetry is broken by the geometry of the structure together with the incident or emission angle of light.
View Article and Find Full Text PDFToday, nanophotonics still lacks components for modulation that can be easily implementable in existing silicon-on-insulator (SOI) technology. Chalcogenide phase change materials (PCMs) are promising candidates for tuning in the near infrared: at the nanoscale, thin layers can provide enough contrast to control the optical response of a nanostructure. Moreover, all-dielectric metamaterials allow for resonant behavior without having ohmic losses in the telecom range.
View Article and Find Full Text PDFNanomaterials can be specially designed to enhance optical chirality and their interaction with chiral molecules can lead to enhanced enantioselectivity. Here we propose periodic arrays of Si nanowires for the generation of enhanced near-field chirality. Such structures confine the incident electromagnetic field into specific resonant modes, which leads to an increase in local optical chirality.
View Article and Find Full Text PDFTraits that promote the maintenance of body temperatures within an optimal range provide advantages to ectothermic species. Pigmentation plasticity is found in many insects and enhances thermoregulatory potential as increased melanization can result in greater heat retention. The thermal melanism hypothesis predicts that species with developmental plasticity will have darker pigmentation in colder environments, which can be an important adaptation for temperate species experiencing seasonal variation in climate.
View Article and Find Full Text PDFWe demonstrate the control of enhanced chiral field distribution at the surface of hybrid metallo-dielectric nanostructures composed of self-assembled vertical hexagonal GaAs-based nanowires having three of the six sidewalls covered with Au. We show that weakly-guided modes of vertical GaAs nanowires can generate regions of high optical chirality that are further enhanced by the break of the symmetry introduced by the gold layer. Changing the angle of incidence of a linearly polarized plane wave it is possible to tailor and optimize the maps of the optical chirality in proximity of the gold plated walls.
View Article and Find Full Text PDFCompact samples of nano-helices built by means of a focused ion beam technology with large bandwidth and high dichroism for circular polarization are promising for the construction of built-in-chip sensors, where the ideal transducer must be sufficiently confined without compromising its filtering ability. Direct all-optical measurements revealed the sample's dichroic character with insufficient details because of scattering and diffraction interference. On the other hand, photoacoustic measurements resulted to be a possible alternative investigation, since they directly deal with absorbed power and allow to get clear evidences of the differential selection for the two opposite polarization states.
View Article and Find Full Text PDFZinc oxide (ZnO) nanoparticles were synthesized on diatomite (DE) surface by a low temperature sol gel technique, starting from zinc acetate dihydrate (Zn(CHCOO) · 2HO) solution in water/ethyl alcohol, in presence of triethanolamine (TEA) with functions of Zn chelating agent, catalyst and mediator of nanoparticle growth on DE surface. Microstructural features were investigated by field emission scanning electron microscopy and x-ray diffraction. ZnO crystalline nanoparticles, well distributed both on the surface and into the porous architecture of diatomite, were obtained just after the synthesis carried out at 80 °C without the need of calcination treatments.
View Article and Find Full Text PDFIII-V semiconductors nanowires (NW) have recently attracted a significant interest for their potential application in the development of high efficiency, highly-integrated photonic devices and in particular for the possibility to integrate direct bandgap materials with silicon-based devices. Here we report the absorbance properties of GaAs-AlGaAs-GaAs core-shell-supershell NWs using photo-acoustic spectroscopy (PAS) measurements in the spectral range from 300 nm to 1100 nm wavelengths. The NWs were fabricated by self-catalyzed growth on Si substrates and their dimensions (length ~5 μm, diameter ~140-150 nm) allow for the coupling of the incident light to the guided modes in near-infrared (IR) part of the spectrum.
View Article and Find Full Text PDF