The recent resurgence of traditional medicines, driven by a renewed interest in the medicinal use of plant extracts, has garnered significant scientific attention for their therapeutic efficacy in treating a wide range of diseases. Glycyrrhiza species, commonly known as licorice, are widely recognized both as herbal remedies and as natural sweeteners. Among these, Glycyrrhiza uralensis stands out for its exceptional therapeutic potential, particularly in enhancing muscle regeneration, slowing muscle aging, and promoting skeletal muscle myogenesis.
View Article and Find Full Text PDFis a traditional herbal medicine with significant bioactivity. This study investigated the effect of crude water extract (GU-CWE) on nitric oxide synthase 2 (NOS2) expression during myogenesis. GU-CWE treatment increased myoblast differentiation by downregulating NOS2 and upregulating myogenic regulatory factors (MYOD, MYOG, and MYH).
View Article and Find Full Text PDFLicochalcone B (LicB), a chalcone derived from and glabra, has received considerable attention due to its diverse pharmacological properties. Accumulated data indicates that LicB has pharmacological effects that include anti-cancer, hepatoprotective, anti-inflammatory, and neuroprotective properties. The action mechanism of LicB has been linked to several molecular targets, such as phosphoinositide 3-kinase/Akt/mammalian target of rapamycin, p53, nuclear factor-κB, and p38, and the involvements of caspases, apoptosis, mitogen-activated protein kinase-associated inflammatory pathways, and anti-inflammatory nuclear factor erythroid 2-related factor 2 signaling pathways highlight the multifaceted therapeutic potential of LicB.
View Article and Find Full Text PDFSkeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges.
View Article and Find Full Text PDFThe enzyme dipeptidyl peptidase 4 (DPP4) is a potential therapeutic target for type 2 diabetes (T2DM). Many synthetic anti-DPP4 medications are available to treat T2DM. The need for secure and efficient medicines has been unmet due to the adverse side effects of existing DPP4 medications.
View Article and Find Full Text PDFThe regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes.
View Article and Find Full Text PDFAndrogenic alopecia (AGA) is a dermatological disease with psychosocial consequences for those who experience hair loss. AGA is linked to an increase in androgen levels caused by an excess of dihydrotestosterone in blood capillaries produced from testosterone by 5α-reductase type II (5αR2), which is expressed in scalp hair follicles; 5αR2 activity and dihydrotestosterone levels are elevated in balding scalps. The diverse health benefits of flavonoids have been widely reported in epidemiological studies, and research interest continues to increase.
View Article and Find Full Text PDFSkeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways.
View Article and Find Full Text PDFMyostatin is a widely recognized inhibitory factor of skeletal muscle growth and significantly influences muscle development and metabolism. In mice, myostatin inhibition improves insulin sensitivity, increases glucose uptake by skeletal muscle, and reduces body fat. Furthermore, Mss51 is downregulated in response to myostatin inhibition, and its deletion appears to improve the metabolic state of skeletal muscle and reduce adipose tissue, which makes Mss51 a potential target for the treatment of obesity and type 2 diabetes.
View Article and Find Full Text PDFCultured meat is a potential sustainable food generated by the myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones.
View Article and Find Full Text PDFImmunoglobulin-like cell adhesion molecule (IgLON4) is a glycosylphosphatidylinositol-anchored membrane protein that has been associated with neuronal growth and connectivity, and its deficiency has been linked to increased fat mass and low muscle mass. Adequate information on IgLON4 is lacking, especially in the context of skeletal muscle. In this study, we report that IgLON4 is profusely expressed in mouse muscles and is intensely localized on the cell membrane.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is a growing global public health issue, and dipeptidyl peptidase-4 (DPP-4) is a potential therapeutic target in T2DM. Several synthetic anti-DPP-4 medications can be used to treat T2DM. However, because of adverse effects, there is an unmet demand for the development of safe and effective medications.
View Article and Find Full Text PDFMyostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN.
View Article and Find Full Text PDFMyostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein.
View Article and Find Full Text PDFCancer cachexia is a condition marked by functional, metabolic, and immunological dysfunctions associated with skeletal muscle (SM) atrophy, adipose tissue loss, fat reduction, systemic inflammation, and anorexia. Generally, the condition is caused by a variety of mediators produced by cancer cells and cells in tumor microenvironments. Myostatin and activin signaling, IGF-1/PI3K/AKT signaling, and JAK-STAT signaling are known to play roles in cachexia, and thus, these pathways are considered potential therapeutic targets.
View Article and Find Full Text PDFThe use of peptides as drugs has progressed over time and continues to evolve as treatment paradigms change and new drugs are developed. Myostatin (MSTN) inhibition therapy has shown great promise for the treatment of muscle wasting diseases. Here, we report the MSTN-derived novel peptides MIF1 (10-mer) and MIF2 (10-mer) not only enhance myogenesis by inhibiting MSTN and inducing myogenic-related markers but also reduce adipogenic proliferation and differentiation by suppressing the expression of adipogenic markers.
View Article and Find Full Text PDFCultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature.
View Article and Find Full Text PDFThe world's population continues to increase, meaning we require more consistent protein supply to meet demand. Despite the availability of plant-based protein alternatives, animal meat remains a popular, high-quality protein source. Research studies have focused on cultured meat (meat grown in vitro) as a safe and more efficient alternative to traditional meat.
View Article and Find Full Text PDFAutophagy is an essential cellular process that involves the transport of cytoplasmic content in double-membraned vesicles to lysosomes for degradation. Neurons do not undergo cytokinesis, and thus, the cell division process cannot reduce levels of unnecessary proteins. The primary cause of neurodegenerative disorders (NDs) is the abnormal deposition of proteins inside neuronal cells, and this could be averted by autophagic degradation.
View Article and Find Full Text PDFThe skeletal muscle (SM) is the largest organ in the body and has tremendous regenerative power due to its myogenic stem cell population. Myostatin (MSTN), a protein produced by SM, is released into the bloodstream and is responsible for age-related reduced muscle fiber development. The objective of this study was to identify the natural compounds that inhibit MSTN with therapeutic potential for the management of age-related disorders, specifically muscle atrophy and sarcopenia.
View Article and Find Full Text PDFThe objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is an increasing global public health problem, and its prevalence is expected to rise in coming decades. Dipeptidyl peptidase-4 (DPP-4) is a therapeutic target for the management of T2DM, and its inhibitors prevent the degradation of glucose-dependent insulinotropic peptide and glucagon-like peptide 1, and thus, maintain their endogenous levels and lower blood glucose levels. Various medicinal plant extracts and isolated bioactive compounds exhibit DPP-4 inhibitory activity.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia and is characterized by irreversible and progressive neurodegeneration. Cholinergic dysfunction has been reported in AD, and several cholinesterase inhibitors, including natural compounds and synthetic analogs, have been developed to treat the disease. However, there is currently no treatment for AD, as most drug-like compounds have failed in clinical trials.
View Article and Find Full Text PDF