Publications by authors named "Sibel Barıscı"

In recent years, shorter-chain fluorinated compounds have been manufactured as alternatives to legacy per- and polyfluoroalkyl substances (PFAS) after a global ban on some long-chain PFAS. This study is the first to investigate the degradability of emerging PFAS by an electrochemical plug flow reactor (EPFR). Ten different emerging PFAS, representing classes of fluorotelomer alcohol, perfluoroalkyl ether carboxylate, polyfluoroalkyl ethersulfonic acids, perfluoroalkyl ether/polyether carboxylates, perfluoroether sulfonate, N-alkyl perfluoroalkylsulfonamido carboxylate, fluoroalkyl phosphonic acid, and perfluoro alkane sulfonamide were investigated.

View Article and Find Full Text PDF

The presence of poly- and perfluoroalkyl substances (PFAS) has caused serious problems for drinking water supplies especially at intake locations close to PFAS manufacturing facilities, wastewater treatment plants (WWTPs), and sites where PFAS-containing firefighting foam was regularly used. Although monitoring is increasing, knowledge on PFAS occurrences particularly in municipal and industrial effluents is still relatively low. Even though the production of C8-based PFAS has been phased out, they are still being detected at many WWTPs.

View Article and Find Full Text PDF

This study investigates electrooxidation of short (C3-C6) and long (C7-C-18) chain perfluorocarboxylic acids (PFCAs) including perfluorooctane sulfonate (PFOA) using Si/BDD electrode. The effect of operational parameters (supporting electrolyte type, applied current density, and initial pH) were explored for PFOA removal. At the optimized conditions, 74% TOC removal and 37% defluorination ratio were gained for 10 mg L of PFOA solution which evidences that the shorter chain PFCAs were formed.

View Article and Find Full Text PDF

This study represents the electrooxidation of anti-cancer drug carboplatin (CrbPt) with different mixed metal oxide (MMO) and boron doped diamond (BDD) electrodes. The most effective anode was found as Ti/RuO with the complete degradation of CrbPt in just 5min. The effect of applied current density, pH and electrolyte concentration on CrbPt degradation has been studied.

View Article and Find Full Text PDF

In this study, response surface methodology (RSM) was used to investigate the effects of different operating conditions on the removal of ciprofloxacin (CIP) by the electrocoagulation (EC) with pure iron electrodes. Box-Behnken design was used for the optimization of the EC process and to evaluate the effects and interactions of process variables such as applied current density, process time, initial CIP concentration and pH on the removal of CIP by the EC process. The optimum conditions for maximum CIP removal (86.

View Article and Find Full Text PDF

In this investigation, natural organic matters (NOM) of different origins (commercial, terrestrial and natural water) were treated by electrocoagulation (EC) process using aluminum, iron and hybrid electrodes. Electrode type effect on removal efficiency was observed for each NOM (commercial, terrestrial, and natural). The results were presented as dissolved organic carbon (DOC) (mg L(-1)) and UV/VIS absorbance (cm(-1)).

View Article and Find Full Text PDF