Single-atom alloy (SAA) catalysts exhibit huge potential in heterogeneous catalysis. Manufacturing SAAs requires complex and expensive synthesis methods to precisely control the atomic scale dispersion to form diluted alloys with less active sites and easy sintering of host metal, which is still in the early stages of development. Here, we address these limitations with a straightforward strategy from a brand-new perspective involving the 'islanding effect' for manufacturing SAAs without dilution: homogeneous RuNi alloys were continuously refined to highly dispersed alloy-islands (~1 nm) with completely single-atom sites where the relative metal loading was as high as 40 %.
View Article and Find Full Text PDFThe selective hydrogenation of biomass derivatives presents a promising pathway for the production of high-value chemicals and fuels, thereby reducing reliance on traditional petrochemical industries. Recent strides in catalyst nanostructure engineering, achieved through tailored support properties, have significantly enhanced the hydrogenation performance in biomass upgrading. A comprehensive understanding of biomass selective upgrading reactions and the current advancement in supported catalysts is crucial for guiding future processes in renewable biomass.
View Article and Find Full Text PDFA Pt-CoO catalyst named Pt-Co(OH)-O was prepared by metal-organic templates (MOTs) conversion and used for catalytic oxidation of toluene. Through the conversion, the morphology of catalysts transformed from rhombic dodecahedron to nanosheet and the coated Pt nanoparticles (NPs) were more exposed. The Binding energy shift in XPS test indicates that the strong metal-support strong interaction (SMSI) has enhanced, and the physicochemical changes caused by it are characterized by other techniques.
View Article and Find Full Text PDFThe porous carbon materials formed from biomass precursors are promising candidates for adsorbing organic vapor pollutants. However, these materials have insufficient pores, which hinder their accessibility to adsorbates. This study develops an ultrahigh-surface-area porous carbon adsorbent with interlacing micro-mesoporous structures through Trichoderma viride decomposition.
View Article and Find Full Text PDFMacroscopic CoO hexagonal tubes were successfully synthesized using hollow two-dimensional (2D) MOL (metal-organic layer) single crystals as sacrificial templates. The hollow 2D MOL single crystals were prepared under hydrothermal conditions with acetonitrile (MeCN) as an interference agent. The formation of hollow-structured 2D MOL single crystals was tracked by time-dependent experiments, and two simultaneous paths-namely, the crystal-to-crystal transformation in solution and the dissolution + migration (toward the external surface) of inner crystallites-were identified as playing a key role in the formation of the unique hollow structure.
View Article and Find Full Text PDFHerein, to investigate the pore effect on toluene catalytic oxidation activity, novel supports for Pt nanoparticles-ZSM-5 foam (ZF) fabricated using polyurethane foam (PUF) templates and pore-modified ZSM-5 foam (ZF-D) treated by acid etching, comparing with conventional ZSM-5 and pore-modified ZSM-5 (ZSM-5-D), were successfully synthesized. Pt nanoparticles were loaded on series ZSM-5 supports by the impregnation method. The Pt loaded on ZF-D (Pt/ZF-D) showed the highest activity of toluene catalytic combustion (i.
View Article and Find Full Text PDF