Publications by authors named "Sibdas Ghosh"

A novel cellulose microfibril swelling (Cms) gene of sp. AY8 was successfully cloned and sequenced using a set of primers designed based on the conserved region of the gene from the genomic database. The molecular cloning of the Cms gene revealed that the gene consisted of 679 bp sequences encoding 225 amino acids.

View Article and Find Full Text PDF

Application of greener pretreatment technology using robust ligninolytic bacteria for short duration to deconstruct rice straw and enhance bioethanol production is currently lacking. The objective of this study is to characterize three bacterial strains isolated from the milieux of cow rumen and forest soil and explore their capabilities of breaking down lignocellulose - an essential process in bioethanol production. Using biochemical and genomic analyses these strains were identified as Bacillus sp.

View Article and Find Full Text PDF

Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities of these naturally occurring endophytic bacteria along with their four consortia, were characterized. HSTU-ABk39 and sp.

View Article and Find Full Text PDF

Endophytic biostimulant with pesticide bioremediation activities may reduce agrochemicals application in rice cultivation. The present study evaluates diazinon-degrading endophytic bacteria, isolated from rice plants grown in the fields with pesticide amalgamation, leading to increased productivity in high-yielding rice plants. These endophytes showed capabilities of decomposing diazinon, confirmed by FT-IR spectra analysis.

View Article and Find Full Text PDF

We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition.

View Article and Find Full Text PDF

This study is a part of our long term project on bioremediation of toxic metals and other pollutants for protection of human health and the environment from severe contamination. The information and results presented in this data article are based on both in vitro and in silico experiments. in vitro experiments were used to investigate the presence of arsenic responsive genes in a bacterial strain B1-CDA that is highly resistant to arsenics.

View Article and Find Full Text PDF

Previously, we reported an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, isolated from an arsenic contaminated lands. Here, we have investigated its genetic composition and evolutionary history by using massively parallel sequencing and comparative analysis with other known Lysinibacillus genomes. Assembly of the sequencing reads revealed a genome of ~4.

View Article and Find Full Text PDF

Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources.

View Article and Find Full Text PDF

The main objective of this study was to identify and isolate arsenic resistant bacteria that can be used for removing arsenic from the contaminated environment. Here we report a soil borne bacterium, B1-CDA that can serve this purpose. B1-CDA was isolated from the soil of a cultivated land in Chuadanga district located in the southwest region of Bangladesh.

View Article and Find Full Text PDF

This paper reports a continuation of our previous research on the phytochelatin synthase1 (PCS1) gene involved in binding and sequestration of heavy metals or metalloids in plant cells. Construction of a 3D structure of the Arabidopsis thaliana PCS1 protein and prediction of gene function by employing iterative implementation of the threading assembly refinement (I-TASSER) revealed that PC ligands (3GC-gamma-glutamylcysteine) and Gln50, Pro53, Ala54, Tyr55, Cys56, Ile102, Gly161, His162, Phe163, Asp204 and Arg211 residues are essential for formation of chelating complex with cadmium (Cd²⁺) or arsenite (AsIII). This finding suggests that the PCS1 protein might be involved in the production of the enzyme phytochelatin synthase, which might in turn bind, localize, store or sequester heavy metals in plant cells.

View Article and Find Full Text PDF

Previously, our in silico analyses identified four candidate genes that might be involved in uptake and/or accumulation of arsenics in plants: arsenate reductase 2 (ACR2), phytochelatin synthase 1 (PCS1) and two multi-drug resistant proteins (MRP1 and MRP2) [Lund et al. (2010) J Biol Syst 18:223-224]. We also postulated that one of these four genes, ACR2, seems to play a central role in this process.

View Article and Find Full Text PDF

Plagioporus kolipinskii n. sp. (Trematoda: Opecoelidae) is described from the intestine of the threespine stickleback, Gasterosteus aculeatus L.

View Article and Find Full Text PDF