In this article, we describe contrasting developmental aspects of paediatric and adult brain tumours. We hypothesize that the formation of cancer progenitor cells, for both paediatric and adult, could be due to epigenetic events. However, the progression of adult brain tumours selectively involves more mutations compared to paediatric tumours.
View Article and Find Full Text PDFCancer drug resistance is an enormous problem. It is responsible for most relapses in cancer patients following apparent remission after successful therapy. Understanding cancer relapse requires an understanding of the processes underlying cancer drug resistance.
View Article and Find Full Text PDFThe concept of cancer stem cells was proposed in the late 1990s. Although initially the idea seemed controversial, the existence of cancer stem cells is now well established. However, the process leading to the formation of cancer stem cells is still not clear and thus requires further research.
View Article and Find Full Text PDFBackground: Ovarian cancer is difficult to treat due to absence of selective drugs and tendency of platinum drugs to promote resistance. Combination therapy using epigenetic drugs is predicted to be a beneficial alternative.
Materials And Methods: This study investigated the effects of combination therapies using two structurally different histone deacetylase (HDAC) inhibitors (HDACi), sodium butyrate and suberanilohydroxamic acid (SAHA), with the calpain inhibitor calpeptin on two characteristically different ovarian cancer cell lines, CAOV-3 and SKOV-3.
The evolution process includes genetic alterations that started with prokaryotes and now continues in humans. A distinct difference between prokaryotic chromosomes and eukaryotic chromosomes involves histones. As evolution progressed, genetic alterations accumulated and a mechanism for gene selection developed.
View Article and Find Full Text PDFBreast cancer persists as the most common cause of cancer death in women worldwide. Ovarian cancer is also a significant source of morbidity and mortality, as the fifth leading cause of cancer death among women. This reflects the continued need for further understanding and innovation in cancer treatment.
View Article and Find Full Text PDFEMT and MET comprise the processes by which cells transit between epithelial and mesenchymal states, and they play integral roles in both normal development and cancer metastasis. This article reviews these processes and the molecular pathways that contribute to them. First, we compare embryogenesis and development with cancer metastasis.
View Article and Find Full Text PDFEpigenetic changes such as DNA methylation and histone methylation and acetylation alter gene expression at the level of transcription by upregulating, downregulating, or silencing genes completely. Dysregulation of epigenetic events can be pathological, leading to cardiovascular disease, neurological disorders, metabolic disorders, and cancer development. Therefore, identifying drugs that inhibit these epigenetic changes are of great clinical interest.
View Article and Find Full Text PDFCancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial-mesenchymal transition, as well as how inherent tumor cell heterogeneity plays a role in drug resistance. It also describes the epigenetic modifications that can induce drug resistance and considers how such epigenetic factors may contribute to the development of cancer progenitor cells, which are not killed by conventional cancer therapies.
View Article and Find Full Text PDFAlthough breast cancer is a heterogeneous disease that is challenging to characterize and treat, the recent explosion of genetic and epigenetic research may help improve these endeavors. In the present review, we use genetic diversity to characterize and classify different types of breast cancer. We also discuss genetic and epigenetic changes that are involved in the development of different breast cancer types and examine how these changes affect prognosis.
View Article and Find Full Text PDFAlthough dispensable for normal pancreatic function, STAT3 signaling is frequently activated in pancreatic cancers. Consistent downregulation of expression of microRNA let-7 is also characteristic of pancreatic ductal adenocarcinoma (PDAC) biopsy specimens. We demonstrate in this study that re-expression of let-7 in poorly-differentiated PDAC cell lines reduced phosphorylation/activation of STAT3 and its downstream signaling events and reduced the growth and migration of PDAC cells.
View Article and Find Full Text PDFCarcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell-cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics.
View Article and Find Full Text PDFProstate cancer represents approximately 10 percent of all cancer cases in men and accounts for more than a quarter of all cancer types. Advances in understanding the molecular mechanisms of prostate cancer progression, however, have not translated well to the clinic. Patients with metastatic and hormone-refractory disease have only palliative options for treatment, as chemotherapy seldom produces durable or complete responses, highlighting the need for novel therapeutic approaches.
View Article and Find Full Text PDFG-rich T-oligos (GT-oligos; oligonucleotides with homology to telomeres) elicit a DNA damage response in cells and induce cytotoxic effects in certain tumor cell lines. We have previously shown that GT-oligo inhibits growth, arrests cell cycle, and induces apoptosis in ovarian, pancreatic, and prostate cancer cells. However, not all ovarian cancer cell lines are susceptible to GT-oligo exposure.
View Article and Find Full Text PDFEpigenetic regulation in eukaryotic and mammalian systems is a complex and emerging field of study. While histone modifications create an open chromatin conformation allowing for gene transcription, CpG methylation adds a further dimension to the expression of specific genes in developmental pathways and carcinogenesis. In this review, we will highlight DNA methylation as one of the distinct mechanisms for gene silencing and try to provide insight into the role of epigenetics in cancer progenitor cell formation and carcinogenesis.
View Article and Find Full Text PDFDevelopment of new breast cancer therapies is needed, particularly as cells become refractory or develop increased drug resistance. In an effort to develop such treatments, class I and II histone deacetylases (HDACs), alone and in combination with other cytotoxic agents, are currently in clinical trial. Herein, we discuss the effects of histone deacetylase inhibitors (HDACi) when used in combination with calpeptin, an inhibitor of the regulatory protease, calpain.
View Article and Find Full Text PDFDNA oligonucleotides with sequence homology to human telomeric DNA (T-oligo) induce cell cycle arrest, followed by apoptosis, senescence, or autophagy in a human cancer cell type-specific manner. T-oligo has potential as a new therapeutic strategy in oncology because of its ability to target certain types of tumor cells while sparing normal ones. In the present study, we demonstrate the T-oligo-induced S-phase cell cycle arrest in four pancreatic cancer cell lines.
View Article and Find Full Text PDFMethylation of CpG repeats in the upstream/promoter regions of genes is an established mechanism of gene silencing in many cell types. DNA methylation results in the recruitment of histone deacetylases (HDACs) to promoter regions, thereby repressing expression of genes. General inhibitors of class I and II HDACs (HDACi), such as sodium butyrate and suberoylanilide hydroxamic acid, suppress the growth of prostate cancer cells in vitro and in vivo.
View Article and Find Full Text PDFOligonucleotides
February 2011
Ovarian cancer remains a leading cause of death among women worldwide, and current treatment regimens for advanced disease are inadequate. Oligonucleotides with sequence homology to telomeres (called T-oligos) have been shown to mimic DNA damage responses in cells and induce cytotoxic effects in certain tumor cell lines. We studied the effects of 2 distinct 16 mer T-oligos in 4 human ovarian epithelial carcinoma cell lines.
View Article and Find Full Text PDF1,25-Dihydroxyvitamin D₃ [1,25(OH)₂D₃] has shown strong promise as an antiproliferative agent in several malignancies, yet its therapeutic use has been limited by its toxicity leading to search for analogues with antitumor property and low toxicity. In this study, we evaluated the in vitro and in vivo properties of 1,25-dihydroxyvitamin D₃-3-bromoacetate [1,25(OH)₂D₃-3-BE], an alkylating derivative of 1,25(OH)₂D₃, as a potential therapeutic agent for renal cancer. Dose response of 1,25(OH)₂D₃-3-BE in 2 kidney cancer cell lines was evaluated for its antiproliferative and apoptotic properties, and mechanisms were evaluated by Western blot and FACS analyses.
View Article and Find Full Text PDFHedyotis corymbosa Linn is spreading, suffruticose annual, belongs to family Rubiaceae frequently met with in field through out India, usually during rainy season. This plant is used for their medicinal properties as a folk medicine to treat jaundice, mouth wash in toothache. Hence the present study was aimed to investigate the hepatoprotective activity of ethanolic extract of Hedyotis corymbosa which was separated in to different fractions against carbon tetrachloride intoxification.
View Article and Find Full Text PDFIn this study, we report that the related adhesion focal tyrosine kinase RAFTK, is an upstream kinase in beta1 integrin mediated activation of Akt. Stimulation through beta1 integrins by fibronectin reversed apoptosis induced by adriamycin. Inhibitors of phosphatidylinositol 3-kinase (PI3 kinase)/Akt (LY 294002), tyrosine kinases (Herbimycin-A) and the cytotoxic agent adriamycin induced apoptosis of REH cells.
View Article and Find Full Text PDF