Background: The role of fatty acid binding protein 4 (FABP4) in lower gastrointestinal (GI) motility is unknown. We aimed to verify the effect of inhibition of FABP4 on GI transit in vivo, and to determine the expression of FABP4 in mouse and human tissues.
Methods: Fatty acid binding protein 4 inhibitor, BMS309403, was administered acutely or chronically for 6 and 13 consecutive days and its effect on GI transit was assessed in physiological conditions and in loperamide-induced constipation.
Background: Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain.
View Article and Find Full Text PDFBackground: Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, which occurs more frequently in women than men. The aim of our study was to determine the role of activation of classical estrogen receptors (ER) and novel membrane receptor, G protein-coupled estrogen receptor (GPER) in human and mouse tissue and to assess the possible cross talk between these receptors in the GI tract.
Methods: Immunohistochemistry was used to determine the expression of GPER in human and mouse intestines.
World J Gastrointest Pharmacol Ther
August 2015
Aim: To study the effect of the opioid-receptor like-1 (ORL1) agonist nociceptin on gastrointestinal (GI) myenteric neurotransmission and motility.
Methods: Reverse transcriptase - polymerase chain reaction and immunohistochemistry were used to localize nociceptin and ORL1 in mouse tissues. Intracellular electrophysiological recordings of excitatory and inhibitory junction potentials (EJP, IJP) were made in a chambered organ bath.
Background: Endocannabinoids (EC) and the cannabinoid-1 (CB1) receptor are involved in the regulation of motility in the gastrointestinal (GI) tract. However, the underlying physiological mechanisms are not completely resolved. The purpose of this work was to study the physiological influence of the endocannabinoid anandamide, the putative endogenous CB1 active cannabinoid, and of the CB1 receptor on ascending peristaltic activity and to identify the involved neuro-neuronal, neuro-muscular and electrophysiological mechanisms.
View Article and Find Full Text PDFThe opioid and cannabinoid systems play a crucial role in multiple physiological processes in the central nervous system and in the periphery. Selective opioid as well as cannabinoid (CB) receptor agonists exert a potent inhibitory action on gastrointestinal (GI) motility and pain. In this study, we examined (in vitro and in vivo) whether PR-38 (2-O-cinnamoylsalvinorin B), a novel analog of salvinorin A, can interact with both systems and demonstrate therapeutic effects.
View Article and Find Full Text PDFObjective: To evaluate bladder function in an established cannabinoid type 1 (CB1) receptor knockout (KO) mouse model via organ-bath (in vitro) and urodynamic (cystometric; in vivo) experiments.
Materials And Methods: In all, 20 8-week-old female wildtype (WT) mice (C57BL/6) and 20 age-matched CB1 KO mice were used. Six mice from each group were used for the organ-bath experiments, where the contractile responses of bladder tissue strips after carbachol exposure (carbachol concentration response curve [CCRC]; myogenic contraction) and during electrical field stimulation (EFS; neurogenic contraction) were assessed.
Introduction: Intestinal inflammatory responses play a critical role in the pathogenesis of postoperative ileus (POI). As cannabinoid receptor-1 (CB1) is involved in inhibiting gastrointestinal (GI) motility and anti-inflammation, we aimed to explore its contribution to POI.
Methods: Experimental POI was induced in adult female CB1-deficient (CB1-/-) mice and wild-type littermates (C57BL/6N) by standardized small bowel manipulation.
Background: Constipation-predominant irritable bowel syndrome (IBS-C) is a common functional gastrointestinal (GI) disorder with abdominal pain and decreased motility. Current treatments of IBS-C are insufficient. The aim of this study was to evaluate the potential application of taranabant, a cannabinoid type 1 (CB1) inverse agonist using mouse models mimicking the symptoms of IBS-C.
View Article and Find Full Text PDFThe enteric nervous system contains excitatory and inhibitory neurons, which control contraction and relaxation of smooth muscle cells as well as gastrointestinal motor activity. Little is known about the exact cellular mechanisms of neuronal signal transduction to smooth muscle cells in the gut. Here we generate a c-Kit(CreERT2) knock-in allele to target a distinct population of pacemaker cells called interstitial cells of Cajal.
View Article and Find Full Text PDFIntroduction: Intestinal inflammation alters colonic afferent nerve sensitivity which may contribute to patients' perception of abdominal discomfort. We aimed to explore whether mast cells and the cyclooxygenase pathway are involved in altered afferent nerve sensitivity during colitis.
Methods: C57Bl6 mice received 3% dextran-sulfate sodium (DSS) in drinking water for 7 days to induce colitis.
P38/Mk2 (mitogen-activated protein kinase (MAPK)-activated protein kinase-2, also known as MAKAP kinase-2) is a member of the mitogen-activated protein kinases (MAPKs) family, and participates in inflammatory responses directly or indirectly. WIN55, 212-2 (WIN55) is a synthetic non-selective agonist of cannabinoid (CB) receptors with remarkable anti-inflammatory properties. This study was to explore the roles of WIN55 and p38/Mk2 signaling pathway in dextran sodium sulfate (DSS)-induced mouse colitis and ascertain their anti-inflammatory mechanisms.
View Article and Find Full Text PDFIntroduction: Postoperative ileus is characterized by infiltrates of leukocytes in the gut wall 24 h after surgery, which is subject to vagal modulation. We hypothesized that vagal modulation is irrelevant during earlier hours of postoperative ileus and aimed to determine whether afferent neuronal feedback to the central nervous system is altered by vagal innervation during this early period.
Methods: C57BL6 mice were laparotomized and received standardized small bowel manipulation to induce postoperative ileus.
Introduction: Postoperative ileus involves reflex inhibition of intestinal motility within hours after surgery and a subsequent intestinal inflammatory response that is characterized by efferent vagal modulation via acetylcholine receptors on intestinal macrophages. We aimed to characterize the role of vagal modulation of intestinal motility during the early hours after surgery.
Methods: C57BL6 mice underwent laparotomy and standardized small bowel manipulation to induce postoperative ileus.
Background: Cannabinoid receptors are involved in visceral pain perception and control of intestinal motility in vivo. The underlying mechanisms are not well characterized. We aimed to determine whether the cannabinoid-1 (CB(1)) receptor modulates intestinal afferent nerve discharge and the peristaltic reflex.
View Article and Find Full Text PDFNeurogastroenterol Motil
April 2009
Herbal preparations are evolving as promising agents for the treatment of functional gastrointestinal disorders which are considered to be secondary to visceral hypersensitivity. We aimed to determine whether a new combination of six herbal extracts reduces the sensitivity of intestinal afferents in rat. Male Wistar rats (250-350 g, n = 6 per group) were gavaged with either vehicle or 2.
View Article and Find Full Text PDFIntroduction: Neuronal reflex inhibition of gastrointestinal motility is a key mechanism in the development of postoperative ileus (POI). The aim of our study was to determine whether intestinal afferent nerve fibers are sensitized during the first hours after surgery contributing to this mechanism.
Methods: Under enflurane anesthesia, C57BL/6 mice underwent laparotomy followed by sham treatment or standardized small bowel manipulation to induce POI.
Evidence exists that visceral afferent sensitivity is subject to regulatory mechanisms. We hypothesized that afferent sensitivity is decreased in the small intestine during intestinal inflammation by an inducible nitric oxide synthase (iNOS)-dependent mechanism. C57BL/6 mice were injected twice with vehicle or 60 mg kg(-1) indomethacin subcutaneously to induce intestinal inflammation.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2009
Cannabinoid-1 (CB(1)) receptors on myenteric neurons are involved in the regulation of intestinal motility. Our aim was to investigate CB(1) receptor involvement in ascending neurotransmission in mouse colon and to characterize the involved structures by functional and morphological means. Presence of the CB(1) receptor was investigated by RT-PCR, and immunohistochemistry was used for colabeling studies.
View Article and Find Full Text PDFThe endocannabinoid (EC) system mediates protection against intestinal inflammation. In this study, we investigated the effects of blocking EC degradation or cellular reuptake in experimental colitis in mice. Mice were treated with trinitrobenzene-sulfonic acid in presence and absence of the fatty acid amide hydrolase (FAAH) blocker URB597, the EC membrane transport inhibitor VDM11, and combinations of both.
View Article and Find Full Text PDF1. The intestinal peristaltic reflex is regulated by local microcircuits that, upon activation, result in an oral contraction and anal relaxation of the circular muscle. This contractile response is associated with typical electrophysiological changes in membrane potential resulting from excitatory and inhibitory myenteric pathways.
View Article and Find Full Text PDFAim: The objective of this study was to assess the efficacy and safety of the phytopharmacon STW 5 versus metoclopramide in functional dyspepsia.
Methods: A retrolective, epidemiological cohort study with parallel groups in 23 randomised centres where both drugs were used routinely was performed. The main outcome variable was improvement of 10 dyspepsia-specific symptoms of a valid gastrointestinal symptom score (GIS) during therapy.
Cannabinoid-1 (CB1) receptor activation affects gastrointestinal propulsion in vivo. It was our aim to further characterize the involved myenteric mechanisms in vivo and in vitro. In CB1(-/-) mice and wild-type littermates we performed in vivo transit experiments by charcoal feeding and in vitro electrophysiological recordings in mouse small intestinal smooth muscle.
View Article and Find Full Text PDFBackground And Aims: Nociceptin is the endogenous agonist of the "orphan" opioid receptor-1 (ORL-1). We investigated whether activation of the ORL-1 receptor influences smooth muscle contractility and enteric neurotransmission within ascending myenteric reflex pathways of rats.
Methods: Reverse transcriptase polymerase chain reaction was performed to evaluate the presence of ORL-1 receptors.