Inverse design of short single-stranded RNA and DNA sequences (aptamers) is the task of finding sequences that satisfy a set of desired criteria. Relevant criteria may be, for example, the presence of specific folding motifs, binding to molecular ligands, sensing properties, and so on. Most practical approaches to aptamer design identify a small set of promising candidate sequences using high-throughput experiments (e.
View Article and Find Full Text PDFd-Amino acid oxidase (DAAO) enzymes bind a range of d-amino acids with variable affinity. As such, the design of selective DAAO-based enzymatic biosensors remains a challenge for real-world biosensor application. Herein, a methodology for developing biosensors with varying substrate selectivity is presented.
View Article and Find Full Text PDFGlycine is an important biomarker in clinical analysis due to its involvement in multiple physiological processes. As such, the need for low-cost analytical tools for glycine detection is growing. As a neurotransmitter, glycine is involved in inhibitory and excitatory neurochemical transmission in the central nervous system.
View Article and Find Full Text PDFChallenges facing enzyme-based electrochemical sensors include substrate specificity, batch to batch reproducibility, and lack of quantitative metrics related to the effect of enzyme immobilization. We present a quick, simple, and general approach for measuring the effect of immobilization and cross-linking on enzyme activity and substrate specificity. The method can be generalized for electrochemical biosensors using an enzyme that releases hydrogen peroxide during its catalytic cycle.
View Article and Find Full Text PDF