Publications by authors named "Siba Das"

Engineered Genetic Incompatibility (EGI) is a method to create species-like barriers to sexual reproduction. It has applications in pest control that mimic Sterile Insect Technique when only EGI males are released. This can be facilitated by introducing conditional female-lethality to EGI strains to generate a sex-sorting incompatible male system (SSIMS).

View Article and Find Full Text PDF

Our aim was to investigate the associations between erythrocyte fatty acids and the risk of islet autoimmunity in children. The Environmental Determinants of Diabetes in the Young Study (TEDDY) is a longitudinal cohort study of children at high genetic risk for type 1 diabetes (n = 8676) born between 2004 and 2010 in the U.S.

View Article and Find Full Text PDF

The field performance of Sterile Insect Technique (SIT) is improved by sex-sorting and releasing only sterile males. This can be accomplished by resource-intensive separation of males from females by morphology. Alternatively, sex-ratio biasing genetic constructs can be used to selectively remove one sex without the need for manual or automated sorting, but the resulting genetically engineered (GE) control agents would be subject to additional governmental regulation.

View Article and Find Full Text PDF

Speciation constrains the flow of genetic information between populations of sexually reproducing organisms. Gaining control over mechanisms of speciation would enable new strategies to manage wild populations of disease vectors, agricultural pests, and invasive species. Additionally, such control would provide safe biocontainment of transgenes and gene drives.

View Article and Find Full Text PDF

Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations.

View Article and Find Full Text PDF

Monosubstituted isopropylated triaryl phosphate (mITP) is a major component of Firemaster 550, an additive flame retardant mixture commonly used in polyurethane foams. Developmental toxicity studies in zebrafish established mITP as the most toxic component of FM 550, which causes pericardial edema and heart looping failure. Mechanistic studies showed that mITP is an aryl hydrocarbon receptor (AhR) ligand; however, the cardiotoxic effects of mITP were independent of the AhR.

View Article and Find Full Text PDF

Firemaster 550 (FM550) is an additive flame retardant mixture used within polyurethane foam and is increasingly found in house dust and the environment due to leaching. Despite the widespread use of FM550, very few studies have investigated the potential toxicity of its ingredients during early vertebrate development. In the current study, we sought to specifically investigate mono-substituted isopropylated triaryl phosphate (mITP), a component comprising approximately 32% of FM550, which has been shown to cause cardiotoxicity during zebrafish embryogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • PFOS is an environmental contaminant that negatively impacts zebrafish behavior when they are exposed to it chronically during different life stages.
  • The study found that adult zebrafish exposed to PFOS exhibited increased swim speed under stress, but exhibited impaired responses compared to controls.
  • F1 offspring from parents exposed to PFOS showed higher rates of malformation and mortality, along with altered swimming behaviors, indicating long-term effects on neurobehavioral development.
View Article and Find Full Text PDF

The GluN1 subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related changes in its expression pattern, some of which correlate with spatial memory performance in mice. Aged C57BL/6 mice show an age-related increase in mRNA expression of GluN1 subunit splice variants that lack the N terminal splice cassette, GluN1(0XX) (GluN1-a). This increase in expression is associated with good performance in reference and working memory tasks.

View Article and Find Full Text PDF

Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development.

View Article and Find Full Text PDF

Caloric restriction enhances N-methyl-D-aspartate (NMDA) receptor binding and upregulates messenger RNA expression of the GluN1 subunit during aging. Old growth hormone receptor knockout mice resemble old calorically restricted rodents in enhanced life span and brain function, as compared with aged controls. This study examined whether aged growth hormone receptor knockout mice also show enhanced expression of NMDA receptors.

View Article and Find Full Text PDF

Age-related decline in memory has been associated with changes in mRNA and protein expression of different NMDA receptor subunits. The NMDA receptor GluN1 subunit appears to be necessary and sufficient for receptor function. There is evidence that the mRNA expressions of some splice forms of the subunit are influenced by aging and/or behavioral testing experience in old mice.

View Article and Find Full Text PDF

N-methyl-D-aspartate (NMDA) receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions.

View Article and Find Full Text PDF

Age-related changes in the protein and mRNA expression of some of the splice forms of the zeta1 (NR1) subunit of the NMDA receptor have been seen in mice and rats. The present study was designed to determine whether individual splice forms of the zeta1 subunit of the NMDA receptor within prefrontal/frontal cortical regions contribute to memory deficits during aging and whether experience in learning tasks can influence the expression of the splice forms. mRNA expression of 4 splice forms (zeta1-1, zeta1-3, zeta1-a and zeta1-b) and mRNA for all known splice forms (zeta1-pan) were examined by in situ hybridization.

View Article and Find Full Text PDF