Publications by authors named "Siavash Ghaffari"

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.

View Article and Find Full Text PDF

Aims/hypothesis: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier.

Methods: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier.

View Article and Find Full Text PDF

In acute lung injury, the lung endothelial barrier is compromised. Loss of endothelial barrier integrity occurs in association with decreased levels of the tight junction protein claudin-5. Restoration of their levels by gene transfection may improve the vascular barrier, but how to limit transfection solely to regions of the lung that are injured is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Full understanding of autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS), highlighted by the latest Autism Speaks MSSNG resource that includes data from over 11,000 individuals.
  • The study found ASD-associated rare genetic variants in about 14% of individuals with ASD, examining data from MSSNG and the Simons Simplex Collection, which suggests similar prevalence in both datasets.
  • The identified variants were mostly nuclear (98%) with a small fraction being mitochondrial, and the research aims to help explore genetic links to ASD traits and identify causes for the 85% of ASD cases that currently lack identified genetic causes.
View Article and Find Full Text PDF

Apical-to-basal transcytosis by endothelial cells can be visualized and quantified using total internal reflection fluorescence (TIRF) microscopy of the basal membrane. Past techniques to study transcytosis including electron microscopy and transwells have several limitations such as confounding from paracellular leakage, low transfection efficiency, and the largely descriptive nature of electron microscopy. After the addition of a fluorescent ligand to the apical endothelial surface, using TIRF to measure exocytosis at the basal membrane bypasses these issues by studying transcytosis across a single cell of a confluent endothelial monolayer in real time.

View Article and Find Full Text PDF

Bone morphogenetic protein-9 (BMP-9) is a circulating cytokine that is known to play an essential role in the endothelial homeostasis and the binding of BMP-9 to the receptor activin-like kinase 1 (ALK-1) promotes endothelial cell quiescence. Previously, using an unbiased screen, we identified ALK-1 as a high-capacity receptor for low-density lipoprotein (LDL) in endothelial cells that mediates its transcytosis in a nondegradative manner. Here we examine the crosstalk between BMP-9 and LDL and how it influences their interactions with ALK-1.

View Article and Find Full Text PDF

Objective: LDL (low-density lipoprotein) transcytosis across the endothelium is performed by the SR-BI (scavenger receptor class B type 1) receptor and contributes to atherosclerosis. HMGB1 (high mobility group box 1) is a structural protein in the nucleus that is released by cells during inflammation; extracellular HMGB1 has been implicated in advanced disease. Whether intracellular HMGB1 regulates LDL transcytosis through its nuclear functions is unknown.

View Article and Find Full Text PDF

Shear stress induces directed endothelial cell (EC) migration in blood vessels leading to vessel diameter increase and induction of vascular maturation. Other factors, such as EC elongation and interaction between ECs and non-vascular areas are also important. Computational models have previously been used to study collective cell migration.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are emerging regulators of biological processes in the vessel wall; however, their role in atherosclerosis remains poorly defined. We used RNA sequencing to profile lncRNAs derived specifically from the aortic intima of mice on a high-cholesterol diet during lesion progression and regression phases. We found that the evolutionarily conserved lncRNA small nucleolar host gene-12 () is highly expressed in the vascular endothelium and decreases during lesion progression.

View Article and Find Full Text PDF

Mechanisms mediating the cardioprotective actions of glucagon-like peptide 1 (GLP-1) were unknown. Here, we show in both ex vivo and in vivo models of ischemic injury that treatment with GLP-1(28-36), a neutral endopeptidase-generated (NEP-generated) metabolite of GLP-1, was as cardioprotective as GLP-1 and was abolished by scrambling its amino acid sequence. GLP-1(28-36) enters human coronary artery endothelial cells (caECs) through macropinocytosis and acts directly on mouse and human coronary artery smooth muscle cells (caSMCs) and caECs, resulting in soluble adenylyl cyclase Adcy10-dependent (sAC-dependent) increases in cAMP, activation of protein kinase A, and cytoprotection from oxidative injury.

View Article and Find Full Text PDF

In healthy blood vessels, albumin crosses the endothelium to leave the circulation by transcytosis. However, little is known about the regulation of albumin transcytosis or how it differs in different tissues; its physiological purpose is also unclear. Using total internal reflection fluorescence microscopy, we quantified transcytosis of albumin across primary human microvascular endothelial cells from both lung and skin.

View Article and Find Full Text PDF

Objective- The atheroprotective effects of estrogen are independent of circulating lipid levels. Whether estrogen regulates transcytosis of LDL (low-density lipoprotein) across the coronary endothelium is unknown. Approach and Results- Using total internal reflection fluorescence microscopy, we quantified transcytosis of LDL across human coronary artery endothelial cells from multiple donors.

View Article and Find Full Text PDF

Growth factors, such as VEGF, promote the sprouting of new blood vessels. Growth factors are generally produced far from the endothelium, and the transport of these proteins is often assumed to occur through diffusion. When sprouting occurs in a perfused vascular bed, however, interstitial flow is present that can modify protein transport.

View Article and Find Full Text PDF

This work represents the role that flow dynamics play in the process of angiogenesis during vascular remodeling. We have developed a method to simultaneously image blood flow dynamics and vascular morphology over a period of 12-16 hours in the remodeling vasculature of avian embryos. The data is combined in a computational model that allows us to calculate parameters such as shear stress, pressure and vorticity in real time and during the entire cardiac cycle.

View Article and Find Full Text PDF

Angiogenesis is tightly controlled by a number of signalling pathways. Although our understanding of the molecular mechanisms involved in angiogenesis has rapidly increased, the role that biomechanical signals play in this process is understudied. We recently developed a technique to simultaneously analyse flow dynamics and vascular remodelling by time-lapse microscopy in the capillary plexus of avian embryos and used this to study the hemodynamic environment present during angiogenic sprouting.

View Article and Find Full Text PDF

Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionised our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound biomicroscopy and optical coherence tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress.

View Article and Find Full Text PDF