Background: Commensal gut bacteria, including can produce metabolites that stimulate the release of gut antimicrobial peptides (AMPs) via the signal transducer and activator of transcription (STAT)3 pathway and prevent obesity-associated leaky gut and chronic inflammation. We have previously reported that wheat germ (WG) selectively increased cecal in obese mice.
Objectives: This study investigated the effects of WG on gut STAT3 activation and AMPs (Reg3γ and Reg3β) as well as the potential of WG to inhibit nuclear Nf-κB-activation and immune cell infiltration in the visceral adipose tissue (VAT) of mice fed a Western diet (i.
Hypothalamic inflammation has been linked to various aspects of central metabolic dysfunction and diseases in humans, including hyperphagia, altered energy expenditure, and obesity. We previously reported that loss of β-carotene oxygenase 2 (BCO2), a mitochondrial inner membrane protein, causes the alteration of the hypothalamic metabolome, low-grade inflammation, and an increase in food intake in mice at an early age, e.g.
View Article and Find Full Text PDF