Publications by authors named "Sian Yang Ow"

Despite best efforts in air purification, airborne infectious diseases will continue to spread due to the continuous emission of bioaerosols by the host/infected person. Hence, a shift in focus from air purification to bioaerosol inactivation is urgently needed. To explore the potential of the cold plasma technology for preventing rapid spread of airborne infectious diseases, we studied a cold plasma ionizer (CPI) device and an electrostatic precipitator (ESP)-coupled CPI (CPI-ESP) device for the inactivation and cleaning of surface-spread microorganisms and bioaerosols, using porcine respiratory coronavirus (PRCV), (), and aerosolized as representatives.

View Article and Find Full Text PDF

Total bacterial count in food is one of important food safety criteria. The current plate count method (Heterotrophic Plate Count) for food analysis requires microbiology lab facilities and at least 2 days turnover time. We developed a rapid fluorescence-based total bacterial count method that utilises semiconductor nanorods (SNRs) conjugated with a lectin Griffonia simplicifolia II (GSII-SNRs) to stain bacterial cells captured on syringe filters, via the common N-acetylglucosamine molecules on bacterial cell wall.

View Article and Find Full Text PDF
Article Synopsis
  • Total bacterial count is crucial for assessing microbial safety in areas like drinking water, but traditional methods take over 24 hours and need a laboratory setting.
  • A new method called "Filter-and-Stain" was developed using gold nanoparticles with affinity ligands to stain bacteria quickly, achieving results in just 20 minutes and detecting as few as 100 CFU/mL.
  • This innovative approach has been successfully tested on environmental water samples, suggesting it could enhance rapid on-site testing for bacterial contamination.
View Article and Find Full Text PDF

A portable surface-enhanced Raman spectroscopy (SERS) sensor for detecting pyocyanin (PYO) in simulated wound fluid and from bacteria samples was developed. Solution-phase SERS detection protocols are designed to be compatible with two different clinical practices for wound exudate collection, namely negative pressure liquid collection and swabbing. For citrate-coated metal nanoparticles of three different compositions, gold (AuNPs), alloyed silver/gold (AgAuNPs), and silver (AgNPs), we firstly confirmed their interaction with PYO in the complex wound fluid, using fluorescence quenching experiments, which rationalized the Raman enhancement effects.

View Article and Find Full Text PDF

Rapid and inexpensive immunodiagnostic assays to monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion are essential for conducting large-scale COVID-19 epidemiological surveillance and profiling humoral responses against SARS-CoV-2 infections or immunizations. Herein, a colorimetic serological assay to detect SARS-CoV-2 IgGs in patients' plasma was developed using short antigenic epitopes conjugated to gold nanoparticles (AuNPs). Four immunodominant linear B-cell epitopes, located on the spike (S) and nucleocapsid (N) proteins of SARS-CoV-2, were characterized for their IgG binding affinity and used as highly specific biological motifs on the nanoparticle to recognize target antibodies.

View Article and Find Full Text PDF

Amyloid fibrils are associated with the pathogenesis of protein misfolding diseases such as Alzheimer's disease. These fibrils typically exhibit different morphologies when grown in vitro, and this has been known to affect their biological properties and cytotoxicity. The formation kinetics and resultant morphology of fibrils formed from the model proteins Bovine Insulin and Hen Egg White Lysozyme have been measured.

View Article and Find Full Text PDF

Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed.

View Article and Find Full Text PDF

Amyloid fibrils are large ordered fibrillar aggregates formed from mis-folded proteins. A number of human diseases are linked to the presence of amyloid deposits, including Alzheimer's disease, Parkinson's disease and type II diabetes. One therapeutic strategy for treating amyloid related diseases involves inhibiting fibril formation.

View Article and Find Full Text PDF

Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with a number of presently incurable diseases such as Alzheimer's and Parkinson's disease. Millions of people worldwide suffer from amyloid diseases. This review summarizes the unique cross-β structure of amyloid fibrils, morphological variations, the kinetics of amyloid fibril formation, and the cytotoxic effects of these fibrils and oligomers.

View Article and Find Full Text PDF

Lysozyme is associated with hereditary systemic amyloidosis in humans. Hen egg white lysozyme (HEWL) has been extensively studied as an amyloid forming protein. In this study, we investigated HEWL amyloid formation over a range of temperatures at two stirring speeds and at low concentrations to avoid gel formation.

View Article and Find Full Text PDF