This study reports a comprehensive analysis and comparison of several AlphaFold2 adaptations and OmegaFold and AlphaFlow approaches in predicting distinct allosteric states, conformational ensembles, and mutation-induced structural effects for a panel of state-switching allosteric ABL mutants. The results revealed that the proposed AlphaFold2 adaptation with randomized alanine sequence scanning can generate functionally relevant allosteric states and conformational ensembles of the ABL kinase that qualitatively capture a unique pattern of population shifts between the active and inactive states in the allosteric ABL mutants. Consistent with the NMR experiments, the proposed AlphaFold2 adaptation predicted that G269E/M309L/T408Y mutant could induce population changes and sample a significant fraction of the fully inactive I form which is a low-populated, high-energy state for the wild-type ABL protein.
View Article and Find Full Text PDFIn this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles evolution and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variants BA.1, BA.2, BA.
View Article and Find Full Text PDFJ Chem Theory Comput
June 2024
Despite the success of AlphaFold methods in predicting single protein structures, these methods showed intrinsic limitations in the characterization of multiple functional conformations of allosteric proteins. The recent NMR-based structural determination of the unbound ABL kinase in the active state and discovery of the inactive low-populated functional conformations that are unique for ABL kinase present an ideal challenge for the AlphaFold2 approaches. In the current study, we employ several adaptations of the AlphaFold2 methodology to predict protein conformational ensembles and allosteric states of the ABL kinase including randomized alanine sequence scanning combined with the multiple sequence alignment subsampling proposed in this study.
View Article and Find Full Text PDFJ Comput Biophys Chem
June 2023
Molecular dynamics (MD) simulations have been extensively used to study protein dynamics and subsequently functions. However, MD simulations are often insufficient to explore adequate conformational space for protein functions within reachable timescales. Accordingly, many enhanced sampling methods, including variational autoencoder (VAE) based methods, have been developed to address this issue.
View Article and Find Full Text PDFDespite the success of AlphaFold2 approaches in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and have been challenged to accurately capture of the effects of single point mutations that induced significant structural changes. We systematically examined several implementations of AlphaFold2 methods to predict conformational ensembles for state-switching mutants of the ABL kinase. The results revealed that a combination of randomized alanine sequence masking with shallow multiple sequence alignment subsampling can significantly expand the conformational diversity of the predicted structural ensembles and capture shifts in populations of the active and inactive ABL states.
View Article and Find Full Text PDFIn this study, we combined AlphaFold-based atomistic structural modeling, microsecond molecular simulations, mutational profiling, and network analysis to characterize binding mechanisms of the SARS-CoV-2 spike protein with the host receptor ACE2 for a series of Omicron XBB variants including XBB.1.5, XBB.
View Article and Find Full Text PDFIn this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles and binding mechanisms of convergent evolution for the SARS-CoV-2 Spike Omicron variants BA.1, BA.2, BA.
View Article and Find Full Text PDFThe groundbreaking achievements of AlphaFold2 (AF2) approaches in protein structure modeling marked a transformative era in structural biology. Despite the success of AF2 tools in predicting single protein structures, these methods showed intrinsic limitations in predicting multiple functional conformations of allosteric proteins and fold-switching systems. The recent NMR-based structural determination of the unbound ABL kinase in the active state and two inactive low-populated functional conformations that are unique for ABL kinase presents an ideal challenge for AF2 approaches.
View Article and Find Full Text PDFAvena sativa phototropin 1 light-oxygen-voltage 2 domain (AsLOV2) is a model protein of Per-Arnt-Sim (PAS) superfamily, characterized by conformational changes in response to external environmental stimuli. This conformational change begins with the unfolding of the N-terminal A'α helix in the dark state followed by the unfolding of the C-terminal Jα helix. The light state is characterized by the unfolded termini and the subsequent modifications in hydrogen bond patterns.
View Article and Find Full Text PDFThe latest wave of SARS-CoV-2 Omicron variants displayed a growth advantage and increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with atomistic simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.
View Article and Find Full Text PDFAvena Sativa phototropin 1 Light-oxygen-voltage 2 domain (AsLOV2) is the model protein of Per-Arnt-Sim (PAS) superfamily, characterized by conformational changes in response to external environmental stimuli. This conformational change is initiated by the unfolding of the N-terminal helix in the dark state followed by the unfolding of the C-terminal helix. The light state is defined by the unfolded termini and the subsequent modifications in hydrogen bond patterns.
View Article and Find Full Text PDFIn this study, we combined AI-based atomistic structural modeling and microsecond molecular simulations of the SARS-CoV-2 Spike complexes with the host receptor ACE2 for XBB.1.5+L455F, XBB.
View Article and Find Full Text PDFThe latest wave SARS-CoV-2 Omicron variants displayed a growth advantage and the increased viral fitness through convergent evolution of functional hotspots that work synchronously to balance fitness requirements for productive receptor binding and efficient immune evasion. In this study, we combined AlphaFold2-based structural modeling approaches with all-atom MD simulations and mutational profiling of binding energetics and stability for prediction and comprehensive analysis of the structure, dynamics, and binding of the SARS-CoV-2 Omicron BA.2.
View Article and Find Full Text PDFIn the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.
View Article and Find Full Text PDFIn the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.
View Article and Find Full Text PDFAllostery plays a crucial role in regulating protein activity, making it a highly sought-after target in drug development. One of the major challenges in allosteric drug research is the identification of allosteric sites. In recent years, many computational models have been developed for accurate allosteric site prediction.
View Article and Find Full Text PDFThe new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, microsecond molecular dynamics simulations, and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2023
In this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.
View Article and Find Full Text PDFThe new generation of SARS-CoV-2 Omicron variants displayed a significant growth advantage and the increased viral fitness by acquiring convergent mutations, suggesting that the immune pressure can promote convergent evolution leading to the sudden acceleration of SARS-CoV-2 evolution. In the current study, we combined structural modeling, extensive microsecond MD simulations and Markov state models to characterize conformational landscapes and identify specific dynamic signatures of the SARS-CoV-2 spike complexes with the host receptor ACE2 for the recently emerged highly transmissible XBB.1, XBB.
View Article and Find Full Text PDFIn this study, we systematically examine the conformational dynamics, binding and allosteric communications in the Omicron BA.1, BA.2, BA.
View Article and Find Full Text PDFThe recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods.
View Article and Find Full Text PDFAllostery refers to the biological process by which an effector modulator binds to a protein at a site distant from the active site, known as allosteric site. Identifying allosteric sites is essential for discovering allosteric process and is considered a critical factor in allosteric drug development. To facilitate related research, we developed PASSer (Protein Allosteric Sites Server) at https://passer.
View Article and Find Full Text PDFPredicting the viscosity (η) of polymer nanocomposites (PNCs) is of critical importance as it governs a dominant role in PNCs' processing and application. Machine-learning (ML) algorithms, enabled by pre-existing experimental and computational data, have emerged as robust tools for the prediction of quantitative relationships between feature parameters and various physical properties of materials. In this work, we employed nonequilibrium molecular dynamics (NEMD) simulation with ML models to systematically investigate the η of PNCs over a wide range of nanoparticle (NP) loadings (φ), shear rates (γ̇), and temperatures ().
View Article and Find Full Text PDFAllostery plays a crucial role in regulating protein activity, making it a highly sought-after target in drug development. One of the major challenges in allosteric drug research is the identification of allosteric sites. In recent years, many computational models have been developed for accurate allosteric site prediction.
View Article and Find Full Text PDFThe fundamental biological importance and complexity of allosterically regulated proteins stem from their central role in signal transduction and cellular processes. Recently, machine-learning approaches have been developed and actively deployed to facilitate theoretical and experimental studies of protein dynamics and allosteric mechanisms. In this review, we survey recent developments in applications of machine-learning methods for studies of allosteric mechanisms, prediction of allosteric effects and allostery-related physicochemical properties, and allosteric protein engineering.
View Article and Find Full Text PDF