Publications by authors named "Sian Wang"

Inside a scanning electron microscope (SEM) chamber, we performed an in situ interlaminar shear test on a z-pinned carbon fiber-reinforced aluminum matrix composite (Cf/Al) fabricated by the pressure the infiltration method to understand its failure mechanism. Experiments show that introducing a stainless-steel z-pin increases the interlaminar shear strength of Cf/Al composite by 148%. The increase in interlaminar shear strength is attributed to the high strength of the stainless-steel z-pin and the strong bonding between the z-pin and the matrix.

View Article and Find Full Text PDF

Z-pinning can significantly improve the interlaminar shear properties of carbon fiber-reinforced aluminum matrix composites (Cf/Al). However, the effect of the metal z-pin on the in-plane properties of Cf/Al is unclear. This study examines the effect of the z-pin on the flexural strength and failure mechanism of Cf/Al composites with different volume contents and diameters of the z-pins.

View Article and Find Full Text PDF

This paper presents the effect of through-thickness reinforcement by steel z-pins on the interlaminar shear properties and strengthening mechanisms of carbon fiber reinforced aluminum matrix composites (Cf/Al) with a short beam shear test method. Microstructural analysis reveals that z-pins cause minor microstructural damage including to fiber waviness and aluminum-rich regions, and interface reaction causes a strong interface between the stainless steel pin and the aluminum matrix. Z-pinned Cf/Al composites show reduced apparent interlaminar shear strength due to a change in the failure mode compared to unpinned specimens.

View Article and Find Full Text PDF