Global warming is causing rapid changes to the cryosphere. Predicting the future trajectory of the cryosphere requires quantitative reconstruction of its past variations. A recently identified sea-ice-associated haptophyte, known as Group 2i Isochrysidales, has given rise to a new sea-ice proxy with its characteristic alkenone distributions.
View Article and Find Full Text PDFAlkenones are among the most widely used paleotemperature biomarkers. Traditionally, alkenones are analyzed using gas chromatography-flame ionization detector (GC-FID), or GC-chemical ionization-mass spectrometry (GC-CI-MS). However, these methods encounter considerable challenges for samples that exhibit matrix interference or low concentrations, with GC-FID requiring tedious sample preparations and GC-CI-MS suffering from nonlinear response and a narrow linear dynamic range.
View Article and Find Full Text PDFRationale: Derivatization with dimethyl disulfide (DMDS) followed by gas chromatography/mass spectrometry (GC/MS) analysis is a well-established method for locating double-bond position on the alkyl chain of mono-unsaturated compounds such as alkenes. For alkenes containing more than one double bond, however, the conventional DMDS derivatization approach forms poly- or cyclized DMDS adducts whose mass spectra are difficult to interpret in terms of double-bond positions. In this study, we report an efficient experimental procedure to produce mono-DMDS adducts for polyunsaturated alkenes with two to six double bonds.
View Article and Find Full Text PDFSilver(I)-mercaptopropyl (Ag-MP) functionalized silica gel has demonstrated its effectiveness in separating various unsaturated organic compounds including unsaturated fatty acid ethyl esters (FAEEs), triglycerols (TAGs) and long-chain alkyl ketones (alkenones). While Ag-MP stationary phase displays many advantages over the conventional silver ion-impregnated silica gel (e.g.
View Article and Find Full Text PDFAlkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C tetra-unsaturated methyl alkenone (%C). Elevated %C is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive.
View Article and Find Full Text PDF