Compelling evidence indicates that oxidative stress contributes to motor neuron injury in amyotrophic lateral sclerosis (ALS), but antioxidant therapies have not yet achieved therapeutic benefit in the clinic. The nuclear erythroid 2-related-factor 2 (Nrf2) transcription factor is a key regulator of an important neuroprotective response by driving the expression of multiple cytoprotective genes via its interaction with the antioxidant response element (ARE). Dysregulation of the Nrf2-ARE system has been identified in ALS models and human disease.
View Article and Find Full Text PDFBackground: Overexpression of mutant copper/zinc superoxide dismutase (SOD1) in rodents has provided useful models for studying the pathogenesis of amyotrophic lateral sclerosis (ALS). Microglia have been shown to contribute to ALS disease progression in these models, although the mechanism of this contribution remains to be elucidated. Here, we present the first evidence of the effects of overexpression of mutant (TG G93A) and wild type (TG WT) human SOD1 transgenes on a set of functional properties of microglia relevant to ALS progression, including expression of integrin β-1, spreading and migration, phagocytosis of apoptotic neuronal cell debris, and intracellular calcium changes in response to an inflammatory stimulus.
View Article and Find Full Text PDFMotor neuronal (MN) degeneration in motor neuron disease (MND) often starts focally before spreading to neighbouring MN populations, suggesting soluble factors may contribute to disease propagation. Whether cerebrospinal fluid (CSF) from MND patients contains such factors has been difficult to prove. We aimed to determine the effect of glia on the response of MNs to CSF from MND patients.
View Article and Find Full Text PDFFree Radic Biol Med
March 2010
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterized by death of motor neurons leading to muscle wasting, paralysis, and death, usually within 2-3 years of symptom onset. The causes of ALS are not completely understood, and the neurodegenerative processes involved in disease progression are diverse and complex. There is substantial evidence implicating oxidative stress as a central mechanism by which motor neuron death occurs, including elevated markers of oxidative damage in ALS patient spinal cord and cerebrospinal fluid and mutations in the antioxidant enzyme superoxide dismutase 1 (SOD1) causing approximately 20% of familial ALS cases.
View Article and Find Full Text PDFThe inflammatory response in amyotrophic lateral sclerosis (ALS) is well documented but the underlying cellular mechanisms have not been fully elucidated. We report that microglia isolated from the mutant human superoxide dismutase 1 (SOD1) G93A transgenic mouse model of ALS have an increased response to the inflammatory stimulus, lipopolysaccharide. Cell surface area and F4/80 surface marker, both indicators of cell activation, are increased relative to transgenic wild-type human SOD1 microglia.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, characterized by progressive dysfunction and death of motor neurons. Although evidence for oxidative stress in ALS pathogenesis is well described, antioxidants have generally shown poor efficacy in animal models and human clinical trials. We have developed an in vitro screening cascade to identify antioxidant molecules capable of rescuing NSC34 motor neuron cells expressing an ALS-associated mutation of superoxide dismutase 1.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2007
The cause(s) of amyotrophic lateral sclerosis (ALS) is not fully understood in the vast majority of cases and the mechanisms involved in motor neuron degeneration are multi-factorial and complex. There is substantial evidence to support the hypothesis that oxidative stress is one mechanism by which motor neuron death occurs. This theory becomes more persuasive with the discovery that mutation of the anti-oxidant enzyme, superoxide dismutase 1 (SOD1), causes disease in a significant minority of cases.
View Article and Find Full Text PDFThere is now compelling evidence of mitochondrial dysfunction in motor neuron disease (MND), but the molecular basis of these abnormalities is unknown. It is also unclear whether the observed mitochondrial dysfunction plays a central role in disease pathogenesis, and if so, whether its amelioration might present therapeutic opportunities. We adopted a candidate generation approach using proteomics to screen for changes in mitochondrial protein expression in a well-validated cell-culture model of superoxide dismutase 1 (SOD1) related familial MND (fMND).
View Article and Find Full Text PDFFamilial amyotrophic lateral sclerosis (FALS) is caused, in 20% of cases, by mutations in the Cu/Zn superoxide dismutase gene (SOD1). Although motor neuron injury occurs through a toxic gain of function, the precise mechanism(s) remains unclear. Using an established NSC34 cellular model for SOD1-associated FALS, we investigated the effects of mutant SOD1 specifically in cells modelling the vulnerable cell population, the motor neurons, without contamination from non-neuronal cells present in CNS.
View Article and Find Full Text PDFThe processes by which a Schwann cell (SC) migrates towards, wraps around and, in some cases, myelinates an axon are incompletely understood. The complex morphological rearrangements involved in these events require fundamental changes in the actin cytoskeleton. Sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) are two modulators of the actin cytoskeleton, and receptors for these signalling lipids are expressed on SCs at the time of differentiation.
View Article and Find Full Text PDF