This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing (16S) and shallow shotgun sequencing (WGS) were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and Neurocomputational Mechanisms of Affiliation and Personality Study Center for Biomedical Research Excellence (NeuroMAP CoBRE) cohorts.
View Article and Find Full Text PDFObjective: Bile acids may contribute to pathophysiologic markers of Alzheimer's disease, including disruptions of the executive control network (ECN) and the default mode network (DMN). Cognitive dysfunction is common in major depressive disorder (MDD), but whether bile acids impact these networks in MDD patients is unknown.
Methods: Resting state functional magnetic resonance imaging (fMRI) scans and blood measures of four bile acids from 74 treatment-naïve adults with MDD were analyzed.
Pathological forms of α-synuclein contribute to synucleinopathies, including Parkinson's disease (PD). Most cases of PD arise from gene-environment interactions. Microbiome composition is altered in PD, and gut bacteria are causal to symptoms in animal models.
View Article and Find Full Text PDFPathological forms of the protein α-synuclein contribute to a family of disorders termed synucleinopathies, which includes Parkinson's disease (PD). Most cases of PD are believed to arise from gene-environment interactions. Microbiome composition is altered in PD, and gut bacteria are causal to symptoms and pathology in animal models.
View Article and Find Full Text PDFMetabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive Behavior Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways.
View Article and Find Full Text PDFThis study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts.
View Article and Find Full Text PDFSex disparities in serum bile acid (BA) levels and Alzheimer's disease (AD) prevalence have been established. However, the precise link between changes in serum BAs and AD development remains elusive. Here, authors quantitatively determined 33 serum BAs and 58 BA features in 4 219 samples collected from 1 180 participants from the Alzheimer's Disease Neuroimaging Initiative.
View Article and Find Full Text PDFMetabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression.
View Article and Find Full Text PDFImportance: Metabolomics reflect the net effect of genetic and environmental influences and thus provide a comprehensive approach to evaluating the pathogenesis of complex diseases, such as depression.
Objective: To identify the metabolic signatures of major depressive disorder (MDD), elucidate the direction of associations using mendelian randomization, and evaluate the interplay of the human gut microbiome and metabolome in the development of MDD.
Design, Setting And Participants: This cohort study used data from participants in the UK Biobank cohort (n = 500 000; aged 37 to 73 years; recruited from 2006 to 2010) whose blood was profiled for metabolomics.
Background: The gut microbiome may play a role in the pathogenesis of neuropsychiatric diseases including major depressive disorder (MDD). Bile acids (BAs) are steroid acids that are synthesized in the liver from cholesterol and further processed by gut-bacterial enzymes, thus requiring both human and gut microbiome enzymatic processes in their metabolism. BAs participate in a range of important host functions such as lipid transport and metabolism, cellular signaling and regulation of energy homeostasis.
View Article and Find Full Text PDFIn this pilot study (N = 9), we highlight new insights gained on ketamine's mechanism of action where we have mapped biochemical processes that are affected within 40 min of intravenous ketamine exposure. Targeting acylcarnitines, we demonstrated rapid utilization of short-chain acylcarnitines within 40 min of ketamine treatment followed by restoration within 24 h; this change in short chain acylcarnitine with rapid-acting antidepressant treatment is consistent with previous work identifying similar change but at 8-weeks with slower-acting SSRI treatment. Using a non-targeted metabolomics platform, we defined broader effects of ketamine on lipid metabolism and identified changes in triglyceride that correlate with ketamine response.
View Article and Find Full Text PDFCombination antidepressant pharmacotherapies are frequently used to treat major depressive disorder (MDD). However, there is no evidence that machine learning approaches combining multi-omics measures (e.g.
View Article and Find Full Text PDFMetabolomics in the Alzheimer's Disease Neuroimaging Initiative cohort provides a powerful tool for mapping biochemical changes in Alzheimer's disease, and a unique opportunity to learn about the association between circulating blood metabolites and brain amyloid-β deposition in Alzheimer's disease. We examined 140 serum metabolites and their associations with brain amyloid-β deposition, cognition and conversion from mild cognitive impairment to Alzheimer's disease in the Alzheimer's Disease Neuroimaging Initiative. Processed [F] Florbetapir PET images were used to perform a voxel-wise statistical analysis of the effect of metabolite levels on amyloid-β accumulation across the whole brain.
View Article and Find Full Text PDFSelective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder (MDD), yet their mechanisms of action are not fully understood and their therapeutic benefit varies among individuals. We used a targeted metabolomics approach utilizing a panel of 180 metabolites to gain insights into mechanisms of action and response to citalopram/escitalopram. Plasma samples from 136 participants with MDD enrolled into the Mayo Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) were profiled at baseline and after 8 weeks of treatment.
View Article and Find Full Text PDFIncreasing evidence suggests Alzheimer's disease (AD) pathophysiology is influenced by primary and secondary bile acids, the end product of cholesterol metabolism. We analyze 2,114 post-mortem brain transcriptomes and identify genes in the alternative bile acid synthesis pathway to be expressed in the brain. A targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals supports these results.
View Article and Find Full Text PDFIntroduction: Altered lipid metabolism is implicated in Alzheimer's disease (AD), but the mechanisms remain obscure. Aging-related declines in circulating plasmalogens containing omega-3 fatty acids may increase AD risk by reducing plasmalogen availability.
Methods: We measured four ethanolamine plasmalogens (PlsEtns) and four closely related phosphatidylethanolamines (PtdEtns) from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 1547 serum) and University of Pennsylvania (UPenn; n = 112 plasma) cohorts, and derived indices reflecting PlsEtn and PtdEtn metabolism: PL-PX (PlsEtns), PL/PE (PlsEtn/PtdEtn ratios), and PBV (plasmalogen biosynthesis value; a composite index).
Evidence suggests interplay among the three major risk factors for Alzheimer's disease (AD): age, APOE genotype, and sex. Here, we present comprehensive datasets and analyses of brain transcriptomes and blood metabolomes from human apoE2-, apoE3-, and apoE4-targeted replacement mice across young, middle, and old ages with both sexes. We found that age had the greatest impact on brain transcriptomes highlighted by an immune module led by Trem2 and Tyrobp, whereas APOE4 was associated with upregulation of multiple Serpina3 genes.
View Article and Find Full Text PDFLate-onset Alzheimer's disease (AD) can, in part, be considered a metabolic disease. Besides age, female sex and APOE ε4 genotype represent strong risk factors for AD that also give rise to large metabolic differences. We systematically investigated group-specific metabolic alterations by conducting stratified association analyses of 139 serum metabolites in 1,517 individuals from the AD Neuroimaging Initiative with AD biomarkers.
View Article and Find Full Text PDFBackground: Acylcarnitines have important functions in mitochondrial energetics and β-oxidation, and have been implicated to play a significant role in metabolic functions of the brain. This retrospective study examined whether plasma acylcarnitine profiles can help biochemically distinguish the three phenotypic subtypes of major depressive disorder (MDD): core depression (CD+), anxious depression (ANX+), and neurovegetative symptoms of melancholia (NVSM+).
Methods: Depressed outpatients (n = 240) from the Mayo Clinic Pharmacogenomics Research Network were treated with citalopram or escitalopram for eight weeks.
Alzheimer's disease (AD) is the most common cause of dementia. The mechanism of disease development and progression is not well understood, but increasing evidence suggests multifactorial etiology, with a number of genetic, environmental, and aging-related factors. There is a growing body of evidence that metabolic defects may contribute to this complex disease.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a common and disabling syndrome with multiple etiologies that is defined by clinically elicited signs and symptoms. In hopes of developing a list of candidate biological measures that reflect and relate closely to the severity of depressive symptoms, so-called "state-dependent" biomarkers of depression, this pilot study explored the biochemical underpinnings of treatment response to cognitive behavior therapy (CBT) in medication-free MDD outpatients. Plasma samples were collected at baseline and week 12 from a subset of MDD patients ( = 26) who completed a course of CBT treatment as part of the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study.
View Article and Find Full Text PDFImportance: Increasing evidence suggests an important role of liver function in the pathophysiology of Alzheimer disease (AD). The liver is a major metabolic hub; therefore, investigating the association of liver function with AD, cognition, neuroimaging, and CSF biomarkers would improve the understanding of the role of metabolic dysfunction in AD.
Objective: To examine whether liver function markers are associated with cognitive dysfunction and the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD.
Metabolomics provides valuable tools for the study of drug effects, unraveling the mechanism of action and variation in response due to treatment. In this study we used electrochemistry-based targeted metabolomics to gain insights into the mechanisms of action of escitalopram/citalopram focusing on a set of 31 metabolites from neurotransmitter-related pathways. Overall, 290 unipolar patients with major depressive disorder were profiled at baseline, after 4 and 8 weeks of drug treatment.
View Article and Find Full Text PDFIntroduction: Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-β deposition.
Method: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling.
Introduction: Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut-brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD).
View Article and Find Full Text PDF