Front Cell Dev Biol
December 2022
Recent research shows that integrin-mediated adhesion contributes to the regulation of cell division at two key steps: the formation of the mitotic spindle at the mitotic entry and the final cytokinetic abscission at the mitotic exit. Failure in either of these processes will have a direct impact on the other in each round of the cell cycle and on the genomic integrity. This review aims to present how integrin signals are involved at these cell cycle stages under normal conditions and some safety mechanisms that may counteract the generation of aneuploid cells in cases of defective integrin signals.
View Article and Find Full Text PDFCell cycle and cell adhesion are two interdependent cellular processes regulating each other, reciprocally, in every cell cycle phase. The cell adhesion to the extracellular matrix (ECM) via integrin receptors triggers signaling pathways required for the cell cycle progression; the passage from the G1 to S phase and the completion of cytokinesis are the best-understood events. Growing evidence, however, suggests more adhesion-dependent regulatory aspects of the cell cycle, particularly during G2 to M transition and early mitosis.
View Article and Find Full Text PDFIntegrin-mediated adhesion to the extracellular matrix is a key regulator of the cell cycle, as demonstrated for the passage of the G1/S checkpoint and the completion of cytokinetic abscission. Here, integrin-dependent regulation of the cell cycle in G2 and early M phases was investigated. The progression through the G2 and M phases was monitored by live-cell imaging and immunofluorescence staining in adherent and non-adherent fibroblast cells.
View Article and Find Full Text PDFBackground: Integrin-mediated adhesion is normally required for cytokinetic abscission, and failure in the process can generate potentially oncogenic tetraploid cells. Here, detachment-induced formation of oncogenic tetraploid cells was analyzed in non-transformed human BJ fibroblasts and BJ expressing SV40LT (BJ-LT) ± overactive HRas.
Results: In contrast to BJ and BJ-LT cells, non-adherent BJ-LT-Ras cells recruited ALIX and CHMP4B to the midbody and divided.
Previous studies have shown that cytokinetic abscission at the end of mitosis is executed by the ESCRT machinery in mammalian cells, and that the process is dependent on adhesion-induced integrin signalling via a FAK-PLK1-CEP55-TSG101/Alix-CHMP4B pathway. The present study identified an alternative abscission mechanism driven by mechanical force. In the absence of integrin signals (non-adherent conditions), cytokinesis in non-transformed human fibroblasts proceeds to CEP55 accumulation at the midbody, but after prolonged time (>3 hours) the major midbody components Aurora B, MKLP1 and CEP55 were no longer detected in the area.
View Article and Find Full Text PDFThe acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization.
View Article and Find Full Text PDFAdhesion to extracellular matrix is required for cell cycle progression through the G1 phase and for the completion of cytokinesis in normal adherent cells. Cancer cells acquire the ability to proliferate anchorage-independently, a characteristic feature of malignantly transformed cells. However, the molecular mechanisms underlying this escape of the normal control mechanisms remain unclear.
View Article and Find Full Text PDFTumor viruses promote cell proliferation in order to gain access to an environment suitable for persistence and replication. The expression of viral products that promote growth transformation is often accompanied by the induction of multiple signs of telomere dysfunction, including telomere shortening, damage of telomeric DNA and chromosome instability. Long-term survival and progression to full malignancy require the bypassing of senescence programs that are triggered by the damaged telomeres.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV) encoded nuclear antigen (EBNA)-1 regulates virus replication and transcription, and participates in the remodeling of the cellular environment that accompanies EBV induced B-cell immortalization and malignant transformation. The putative cellular targets of these effects of EBNA-1 are largely unknown. To address this issue we have profiled the transcriptional changes induced by short- and long-term expression of EBNA-1 in the EBV negative B-cell lymphoma BJAB.
View Article and Find Full Text PDFEpidemiological and molecular evidence links Epstein-Barr virus (EBV) carriage to the pathogenesis of human malignancies of lymphoid and epithelial cell origin but the mechanisms of viral oncogenesis are poorly understood. Burkitt's lymphoma, a tumor occurring in both EBV-positive and -negative forms, provides a convenient model for analysis of the relative contribution of genetic changes and viral products that are expressed in the malignant cells. Here we review recent findings that highlight several mechanisms by which EBV could play an important role in oncogenesis by promoting genomic instability.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV) nuclear antigen (EBNA)-1 is the only viral protein expressed in all EBV-carrying malignancies, but its contribution to oncogenesis has remained enigmatic. We show that EBNA-1 induces chromosomal aberrations, DNA double-strand breaks, and engagement of the DNA damage response (DDR). These signs of genomic instability are associated with the production of reactive oxygen species (ROS) and are reversed by antioxidants.
View Article and Find Full Text PDF