Publications by authors named "SiXing Yang"

The initiation of calcium oxalate (CaOx) kidney stone formation is highly likely to stem from injury to the renal tubular epithelial cells (RTECs) induced by stimulation from an aberrant urinary environment. CHAC1 plays a critical role in stress response mechanisms by regulating glutathione metabolism. Endoplasmic reticulum (ER) stress and ferroptosis are demonstrated to be involved in stone formation.

View Article and Find Full Text PDF

Given the high recurrence rate of kidney stones, surgical lithotripsy and stone removal are not the ultimate treatments for kidney stones. There's an urgent need to explore the genetic mechanisms behind the susceptibility to kidney stones and to identify potential targets for prevention, to reduce the renal damage caused by recurrent stone formation. In this study, we screened 4548 circulating proteins using proteome-wide Mendelian Randomization (MR) to find proteins with a causal relationship to kidney stone risk.

View Article and Find Full Text PDF

To investigate the role of selenium and selenium-containing proteins in the etiology and pathogenesis of kidney stones. The HK-2 cell line was subjected to supersaturation oxalate treatment to establish an in vitro model of calcium oxalate kidney stones, while SD rats were administered with ethylene glycol to establish an in vivo model of calcium oxalate kidney stones. qPCR analysis was employed to investigate the alterations in selenoproteins within the models, and subsequently, genes exhibiting significant changes were identified.

View Article and Find Full Text PDF
Article Synopsis
  • Research on nephrolithiasis, or kidney stone formation, is crucial due to its high incidence and economic impact, with a focus on the immune-inflammatory processes involved in its development.
  • A total of 370 articles on this topic published since 2000 were analyzed using tools like VOSviewer and CiteSpace, revealing significant growth in research over the past five years, particularly from China and the USA.
  • Key findings highlighted important research themes such as inflammation and oxidative stress, with the most prolific author being Khan SR, whose work is highly cited, providing insights into current trends and future directions in this field.
View Article and Find Full Text PDF

Oxalate-induced damage to renal tubular epithelial cells (RTECs) is an essential factor in the incident kidney stone, but the specific mechanism is unclear. Recent research has pinpointed interacting areas within the endoplasmic reticulum and mitochondria, called mitochondria-associated membranes (MAMs). These studies have linked endoplasmic reticulum stress (ERS) and oxidative imbalance to kidney disease development.

View Article and Find Full Text PDF

Background: Nephrolithiasis, a common and chronic urological condition, exerts significant pressure on both the general public and society as a whole. The precise mechanisms of nephrolith formation remain inadequately comprehended. Nevertheless, the utilization of proteomics methods has not been employed to examine the development of renal calculi in order to efficiently hinder and manage the creation and reappearance of nephrolith.

View Article and Find Full Text PDF

Oxalate is an organic dicarboxylic acid that is a common component of plant foods. The kidneys are essential organs for oxalate excretion, but excessive oxalates may induce kidney stones. Jupiter microtubule associated homolog 2 (JPT2) is a critical molecule in Ca mobilization, and its intrinsic mechanism in oxalate exposure and kidney stones remains unclear.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Urolithiasis represents a predominant concern within urology due to its high recurrence rate and consequential surgical complications. Traditional Chinese Medicine (TCM), with a history spanning over 2000 years in treating kidney diseases, not only offers a less invasive and cost-effective option for treating and preventing urolithiasis, but also serves as a pharmacological treasure trove for the development of anti-urolithic drugs.

Aim Of The Study: With the continuous deepening of research on the anti-urolithic effects of Chinese medicines, the pharmacological mechanisms of TCMs against urolithiasis are continuously evolving.

View Article and Find Full Text PDF

Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors.

View Article and Find Full Text PDF

The CRISPR-Cas system, initially for DNA-level gene editing and transcription regulation, has expanded to RNA targeting with the Cas13d family, notably the RfxCas13d. This advancement allows for mRNA targeting with high specificity, particularly after catalytic inactivation, broadening the exploration of translation regulation. This study introduces a CRISPR-dCas13d-eIF4G fusion module, combining dCas13d with the eIF4G translation regulatory element, enhancing target mRNA translation levels.

View Article and Find Full Text PDF

Bladder cancer is one of the most common malignant tumours of the urogenital system, with high morbidity and mortality. In most cases, surgery is considered the first choice of treatment, followed by adjuvant chemotherapy. However, the 5-year recurrence rate is still as high as 65% in patients with non-invasive or in situ tumours and up to 73% in patients with slightly more advanced disease at initial diagnosis.

View Article and Find Full Text PDF

Injury to the renal tubular epithelium has emerged as a leading factor underlying the formation of kidney stones. Indeed, epithelial cell damage contributes to the adherence and aggregation of crystals, thereby accelerating the formation of renal stones. Meanwhile, exosomes play an instrumental role in cellular communication, including DNA, RNA, mRNA, etc.

View Article and Find Full Text PDF

The Holmium (Ho:YAG) laser is presently the most extensively employed in laser lithotripsy for the management of kidney stones. Despite its adoption as the gold standard for laser lithotripsy, Ho:YAG laser lithotripsy poses three significant challenges, namely thermal effect, insufficient stone fragmentation, and stone displacement, which have garnered increased attention from urologic surgeons. Nowadays, the femtosecond laser is regarded as a potential alternative to the Ho:YAG laser due to its capacity to ablate diverse materials with minimal thermal effect.

View Article and Find Full Text PDF

Surgical crushing of stones alone has not addressed the increasing prevalence of kidney stones. A promising strategy is to tackle the kidney damage and crystal aggregation inherent in kidney stones with the appropriate therapeutic target. FKBP prolyl isomerase 5 (FKBP5) is a potential predictor of kidney injury, but its status in calcium oxalate (CaOx) kidney stones is not clear.

View Article and Find Full Text PDF

Hyperoxaluria-induced damage to renal tubular epithelial cells (RTECs) is considered the most significant contributor to kidney stone formation. However, the precise regulatory mechanism underlying this damage, particularly its association with mitophagy dysfunction, remains unclear. Additionally, effective preventive medications for kidney stones are lacking.

View Article and Find Full Text PDF

Background: The identification of uropathogens (UPBs) and urinary tract colonizing bacteria (UCB) conduces to guide the antimicrobial therapy to reduce resistant bacterial strains and study urinary microbiota. This study established a nomogram based on the nanopore-targeted sequencing (NTS) and other infectious risk factors to distinguish UPB from UCB.

Methods: Basic information, medical history, and multiple urine test results were continuously collected and analyzed by least absolute shrinkage and selection operator (LASSO) regression, and multivariate logistic regression was used to determine the independent predictors and construct nomogram.

View Article and Find Full Text PDF

The high incidence, recurrence and treatment costs of urolithiasis have a serious impact on patients and society. For a long time, countless scholars have been working tirelessly on studies related to the etiology of urolithiasis. A comprehensive understanding of the current status will be beneficial to the development of this field.

View Article and Find Full Text PDF

Schizandrin B (SchB) protects against oxidative, inflammatory, and ferroptotic injury. Oxidative stress and inflammation are indispensably involved in nephrolithiasis and ferroptosis also plays an important role in stone formation. It is unclear whether SchB can ameliorate nephrolithiasis; its underlying mechanism is also unknown.

View Article and Find Full Text PDF

Bioinspired surfaces with special wettabilities attract increasing attention due to their extensive applications in many fields. However, the characterizations of surface wettability by contact angle (CA) and sliding angle (SA) have clear drawbacks. Here, by using an array of triangular micropillars (ATM) prepared by soft lithography, the merits of measuring the friction force of a water droplet on ATM over measurements of CA and SA in characterizing the surface wettability are demonstrated.

View Article and Find Full Text PDF

Background: The ossification of renal tubular epithelial cells (RTECs) plays an important initial role in the formation of kidney stones, but its specific mechanism is still unclear. The JAK2/STAT3 signaling pathway is important for bone cell differentiation. Accordingly, we explored the role and mechanism of the JAK2/STAT3 signaling pathway in the ossification of RTECs.

View Article and Find Full Text PDF

The adhesion behaviors of droplets on surfaces are attracting increasing attention due to their various applications. Many bioinspired superhydrophobic surfaces with different adhesion states have been constructed in order to mimic the functions of natural surfaces such as a lotus leaf, a rose petal, butterfly wings, etc. In this review, we first present a brief introduction to the fundamental theories of the adhesion behaviors of droplets on various surfaces, including low adhesion, high adhesion and anisotropic adhesion states.

View Article and Find Full Text PDF

Objective: To demonstrate the advantage of our newly designed magnetic ureteric stenting retrieval device over traditional nonmagnetic ureteric stents and other retrieval devices without cystoscopy intervention on clinical application and cost-related outcomes. . A total of 333 patients were recruited into two study groups: magnetic-end ureteral stent (Group A) and conventional ureteral stent (Group B).

View Article and Find Full Text PDF

Targeting PD1/PDL1 with blocking antibodies for cancer therapy has shown promising benefits in the clinic, but only approximately 20-30% of patients develop durable clinical responses to the treatment. Bispecific antibodies (BsAbs) that combine PD1/PDL1 blockade with the modulation of another immune checkpoint target may have greater potential to enhance immune checkpoint blockade therapy. In this study, we identified an anti-PD1 monoclonal antibody, 609A, whose heavy chain can pair with a variety of light chains from different antibodies while maintaining its PD1 binding/blocking activity.

View Article and Find Full Text PDF