Publications by authors named "SiLiang Wang"

Nanoparticle-based drug delivery systems hold great promise for improving the effectiveness of anti-tumor therapies. However, their clinical translation remains hindered by several significant challenges, including intricate preparation processes, limited drug loading capacity, and concerns regarding potential toxicity. In this context, pure drug-assembled nanosystems (PDANSs) have emerged as a promising alternative, attracting extensive research interest due to their simple preparation methods, high drug loading efficiency, and suitability for large-scale industrial production.

View Article and Find Full Text PDF

Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO) nanospheres, we constructed an injectable composite hydrogel (AhCeO-Gel) with microenvironment modulation capability. AhCeO-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs.

View Article and Find Full Text PDF

Mounting evidence strongly indicates that exosomes are pivotal in the advancement of cancer, yet the overarching profile of exosomal proteins and their contribution to lung adenocarcinoma (LUAD) progression remain underexplored. In our investigation, we isolated exosomes from treatment-naive LUAD (n = 20) and paired normal adjacent tissues (NATs), and conducted integrated proteomic on the acquired exosomes and source tissues to ascertain origin characteristics and potential therapeutic targets of the exosomal proteins in LUAD. The omics data revealed the overall landscape of exosomal proteins from tissues in LUAD, underscoring the profound linkage between exosomal proteins and tumor metastasis.

View Article and Find Full Text PDF

Fructose metabolism has emerged as a significant contributor to cancer cell proliferation, yet the underlying mechanisms and sources of fructose for cancer cells remain incompletely understood. In this study, we demonstrate that cancer cells can convert glucose into fructose through a process called the AKR1B1-mediated polyol pathway. Inhibiting the endogenous production of fructose through AKR1B1 deletion dramatically suppressed glycolysis, resulting in reduced cancer cell migration, inhibited growth, and the induction of apoptosis and cell cycle arrest.

View Article and Find Full Text PDF

Objectives: This pharmacovigilance analysis was conducted to assess the safety signals of FMS-related tyrosine kinase 3 (FLT3) inhibitors in a real-world setting using the United States Food and Drug Administration Adverse Event Reporting System (FAERS).

Design: We analyzed adverse event (AE) reports related to FLT3 inhibitors submitted to the FAERS database from the first quarter of 2015 to the fourth quarter of 2022. Disproportionality analysis was used to identify AEs of FLT3 inhibitors in the FAERS database.

View Article and Find Full Text PDF

Immunosuppression characterizes the tumour microenvironment in HCC, and recent studies have implicated RNA-binding proteins (RBPs) in the development of HCC. Here, we conducted a screen and identified RBM12 as a key protein that increased the expression of PD-L1, thereby driving immune evasion in HCC. Furthermore, RBM12 was found to be significantly upregulated in HCC tissues and was associated with a poor prognosis for HCC patients.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) displays enhanced glycolysis, pivotal for fulfilling the heightened energy demands intrinsic to its malignant progression. Recent research has indicated that endogenous glycogen rather than exogenous glucose acts as the major carbon source for glycolysis, highlighting the need to better understand the regulation of glycogen homeostasis in CCA. Here, through comprehensive integrative analysis, we identified that glycogen phosphorylase brain form (PYGB), the main enzyme involved in glycogen homeostasis, was markedly upregulated in CCA tissues, serving as an independent prognostic indicator for human patients with CCA.

View Article and Find Full Text PDF

Circulating tumor cell clusters/micro-emboli (CTM) possess greater metastatic capacity and survival advantage compared to individual circulating tumor cell (CTC). However, the formation of CTM subtypes and their role in tumor metastasis remain unclear. In this study, we used a microfluidic Cluster-Chip with easy operation and high efficiency to isolate CTM from peripheral blood, which confirmed their correlation with clinicopathological features and identified the critical role of CTC-platelet clusters in breast cancer metastasis.

View Article and Find Full Text PDF

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina.

View Article and Find Full Text PDF
Article Synopsis
  • Esophageal squamous cell carcinoma (ESCC) shows increased activation of the methionine cycle, which is linked to poorer patient survival and drives cell proliferation through S-adenosyl-methionine (SAM) production.
  • The study reveals that methionine influences gene expression by enhancing METTL3-mediated RNA methylation, particularly affecting the expression of NR4A2, a gene that promotes ESCC growth and worsens patient outcomes.
  • Celecoxib is identified as a potential new treatment for ESCC by inhibiting NR4A2, suggesting that targeting the methionine cycle could be a more effective approach than restricting methionine intake itself.*
View Article and Find Full Text PDF

Recently, aqueous zinc ion batteries (AZIBs) with the superior theoretical capacity, high safety, low prices, and environmental protection, have emerged as a contender for advanced energy storage. However, challenges related to cathode materials, such as dissolution, instability, and structural collapse, have hindered the progress of AZIBs. Here, a novel AZIB is constructed using an oxidized 2D layered MnBiTe cathode for the first time.

View Article and Find Full Text PDF

Background: Yi-Qi-Huo-Xue Decoction (YQHXD), a traditional Chinese medicine formula, has demonstrated efficacy in the clinical treatment of intracerebral hemorrhage (ICH) for over a decade. Nevertheless, the precise pharmacotherapeutic compounds of YQHXD capable of penetrating into cerebral tissue and the pharmacological underpinnings of YQHXD remain ambiguous.

Methods: The active components of YQHXD in rat brains was analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) refer to a group of immature myeloid cells with potent immunosuppressive capacity upon activation by pathological conditions. Because of their potent immunosuppressive ability, MDSCs have garnered extensive attention in the past few years in the fields of oncology, infection, chronic inflammation and autoimmune diseases. Research on MDSCs in liver diseases has gradually increased, and their potential therapeutic roles will be further explored.

View Article and Find Full Text PDF

Utilizing the ionic flux to generate voltage output has been confirmed as an effective way to meet the requirements of clean energy sources. Different from ionic thermoelectric (i-TE) and hydrovoltaic devices, a new hydrothermal chemical generator is designed by amorphous FeCl particles dispersing in MWCNT and unique ferric chloride or water gate. In the presence of gate, the special ion behaviors enable the cell to present a constant voltage of 0.

View Article and Find Full Text PDF

Programmed cell death protein 1 (PD-1) binds to its ligand to help tumours evade the immune system and promote tumour progression. Although anti-PD-1/PD-L1 therapies show powerful effects in some patients, most patients are unable to benefit from this treatment due to treatment resistance. Therefore, it is important to overcome tumour resistance to PD-1/PD-L1 blockade.

View Article and Find Full Text PDF

Recently, the topological insulator MnBiTe has aroused great attention owing to its exotic quantum phenomena and intriguing device applications, but the superior performances of MnBiTe have not been researched in the field of electrochemistry. By theoretical calculations, it is found that MnBiTe exhibits excellent Zn storage and transport properties. Therefore, it is speculated that MnBiTe has excellent electrochemical performance in zinc-ion batteries (ZIBs).

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) hold great promise as carriers for developing drug delivery systems (DDSs) aimed at managing ischemic stroke (IS). Previous research has highlighted the vital role played by the lipid composition and biophysical characteristics of LNPs, influencing their interactions with cells and tissues. This understanding presents an opportunity to engineer LNPs tailored specifically for enhanced IS treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Metal halide-perovskite photodetectors are gaining attention for their potential in various optoelectronic applications, especially when integrated with compact imaging systems.
  • Challenges still exist in managing light reflection on these detectors' surfaces, which can reduce their effectiveness.
  • This study showcases how surface microstructure engineering on MAPbBr microsheets enhances light absorption and minimizes reflection, resulting in high-performance photodetectors with improved sensitivity and low noise levels.
View Article and Find Full Text PDF

Hepatic stellate cells (HSCs) represent a significant component of hepatocellular carcinoma (HCC) microenvironments which play a critical role in tumor progression and drug resistance. Tumor-on-a-chip technology has provided a powerful platform to investigate the crosstalk between activated HSCs and HCC cells by mimicking physiological architecture with precise spatiotemporal control. Here we developed a tri-cell culture microfluidic chip to evaluate the impact of HSCs on HCC progression.

View Article and Find Full Text PDF

2D perovskites have attracted tremendous attention due to their superior optoelectronic properties and potential applications in optoelectronic devices. Especially, the larger bandgap of 2D perovskite means that they are suitable for UV photodetection. However, the layered structure of 2D perovskites hinders the interlayer carrier transport, which limits the improvement of device performance.

View Article and Find Full Text PDF

Pyroptosis is a gasdermin-mediated programmed cell death (PCD) pathway. It differs from apoptosis because of the secretion of inflammatory molecules. Pyroptosis is closely associated with various malignant tumors.

View Article and Find Full Text PDF

Background: Osteosarcoma is a disease that primarily affects adolescents with skeletal immaturity. LncRNAs are abnormally expressed and correlated with osteosarcoma patients' prognosis. We identified aberrant expression of LncRNA SNHG25 (small nucleolar RNA host gene 25) in osteosarcoma and analyzed the molecular mechanisms by which it regulates osteosarcoma progression.

View Article and Find Full Text PDF

In the current study, a population pharmacokinetic (PPK) model was developed for biapenem in patients with febrile neutropenia (FN) and haematological malignancies. Through Monte Carlo simulation, optimal administration regimens were suggested based on the developed PPK model. In a prospective, single-centre, open-label study, 174 plasma samples from 120 Chinese patients with FN and haematological malignancies were analysed by chromatography, and PK parameters were analysed by NONMEM.

View Article and Find Full Text PDF

Purine adenosine pathway exists widely in the body metabolism, and is involved in regulating various physiological processes. It is one of the important pathways of environmental regulation in human body. CD73 is essentially a protease that catalyzes further dephosphorylation of extracellular adenine nucleotides, hydrolyzing extracellular AMP to adenosine and phosphate.

View Article and Find Full Text PDF

Background: New therapeutic approaches are required to improve the outcomes of lung cancer (LC), a leading cause of cancer-related deaths worldwide. Chinese herbal medicine formulae widely used in China provide a unique opportunity for improving LC treatment, and the Shuang-Huang-Sheng-Bai (SHSB) formula is a typical example. However, the underlying mechanisms of action remains unclear.

View Article and Find Full Text PDF