Publications by authors named "Si-yu Zeng"

Oxidative stress, inflammation, and hypertension constitute a self-perpetuating vicious circle to exacerbate hypertension and subsequent hypertensive cardiac hypertrophy. NADPH oxidase (Nox) 1/4 inhibitor GKT137831 alleviates hypertensive cardiac hypertrophy in models of secondary hypertension; however, it remains unclear about its effect on hypertensive cardiac hypertrophy in models of essential hypertension. This study is aimed at determining the beneficial role of GKT137831 in hypertensive cardiac hypertrophy in spontaneously hypertensive rats (SHRs) and its mechanisms of action.

View Article and Find Full Text PDF

Rutaecarpine attenuates hypertensive cardiac hypertrophy in the rats with abdominal artery constriction (AAC); however, its mechanism of action remains largely unknown. Our previous study indicated that NADPH oxidase 4 (Nox4) promotes angiotensin II (Ang II)-induced cardiac hypertrophy through the pathway between reactive oxygen species (ROS) and a disintegrin and metalloproteinase-17 (ADAM17) in primary cardiomyocytes. This research aimed to determine whether the Nox4-ROS-ADAM17 pathway is involved in the protective action of rutaecarpine against hypertensive cardiac hypertrophy.

View Article and Find Full Text PDF

NADPH oxidases (Noxs) 1/4 dual inhibitor GKT137831 prevents hypertensive cardiac remodelling in angiotensin II-infused transgenic mice with cardiomyocyte-specific human Nox4 (c-hNo x 4 Tg); however, further research is still required to determine the beneficial role of GKT137831 in hypertensive cardiac remodelling in other types of hypertensive models because this hypertensive model is insufficient to mimic the complicated pathological mechanisms of hypertension. A disintegrin and metalloprotease 17 (ADAM17) promotes the shedding of tumour necrosis factor α (TNF-α), TNF-α receptor, interleukin 1 receptor-II and interleukin 6 (IL-6) receptor from cells, thereby mediating the signalling pathways induced by corresponding proinflammatory cytokines. This study aimed to determine whether GKT137831 prevents hypertensive cardiac remodelling and its mechanisms of action in the rats with abdominal artery coarctation (AAC).

View Article and Find Full Text PDF

Objectives: Protein arginine methyltransferase 2 (PRMT2) protects against vascular injury-induced intimal hyperplasia; however, little is known about the role of PRMT2 in angiotensin II (Ang II)-induced VSMCs proliferation and inflammation. This research aims to determine whether PRMT2 inhibits Ang II-induced proliferation and inflammation of vascular smooth muscle cells (VSMCs).

Materials And Methods: PRMT2 overexpression was used to elucidate the role of PRMT2 in Ang II-induced VSMCs proliferation and inflammation.

View Article and Find Full Text PDF

The peroxisome proliferator-activated receptor- (PPAR-) agonist fenofibrate ameliorates cardiac hypertrophy; however, its mechanism of action has not been completely determined. Our previous study indicated that a disintegrin and metalloproteinase-17 (ADAM17) is required for angiotensin II-induced cardiac hypertrophy. This study aimed to determine whether ADAM17 is involved in the protective action of fenofibrate against cardiac hypertrophy.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) has a potent protective action on the cardiovascular system; however, little is known about the role of CGRP in angiotensin II- (Ang II-) induced inflammation of vascular smooth muscle cells (VSMCs). This study is aimed at determining the anti-inflammatory effect of CGRP in Ang II-treated VSMCs and whether a disintegrin and metalloproteinase 17 (ADAM17) modulates this protective action. Small interference RNA (siRNA) and inhibitors of CGRP, epidermal growth factor receptor (EGFR), and extracellular signal-regulated kinase 1/2 (ERK1/2) were adopted to investigate their effect on Ang II-induced inflammation in VSMCs.

View Article and Find Full Text PDF

Plant hormones are a class of organic substances which are synthesized during the plant metabolism. They have obvious physiological effect on plant growth at very low concentrations. Generally, plant hormones are mainly divided into 5 categories: auxins, cytokinins, ethylene, gibberellins (GAs) and abscisic acid (ABA).

View Article and Find Full Text PDF

Microbial regrowth needs to be managed during water reclamation and distribution. The aim of present study was to investigate the removal and regrowth of Escherichia coli (E. coli) and Salmonella in water reclamation and distribution system by using membrane integrity assay (PMA-qPCR), reverse transcriptional activity assay (Q-RT-PCR) and culture-based assay, and also to evaluate the relationships among bacterial regrowth, and environmental factors in the distribution system.

View Article and Find Full Text PDF

Adipose triglyceride lipase (ATGL), the rate-limiting enzyme of triglyceride (TG) hydrolysis, plays an important role in TG metabolism. ATGL knockout mice suffer from TG accumulation and die from heart failure. However, the mechanisms underlying cardiac hypertrophy caused by ATGL dysfunction remain unknown.

View Article and Find Full Text PDF

Thesis aims at evaluating and setting priority to human toxicity and ecotoxicity of coking pollutants. A field research and sampling project are conducted in coke plant in Shanxi so as to complete the coke emission inventory. The USEtox model representing recommended practice in LCIA characterization is applied to the emission inventory to quantify the potential impacts on human toxicity and ecotoxicity of emerging pollutants.

View Article and Find Full Text PDF

Mass of potassium is consumed in the process of crop production, which is the dominating section of potassium flow and circulation in China. However, the degree of self-sufficiency is relatively low due to the deficient domestic resource of potassium. This study analyzed the key links of potassium issues in crop production and consumptive use in 2009 based on substance flow analysis.

View Article and Find Full Text PDF

Background: Activation of epidermal growth factor receptor (EGFR) plays an important role in angiotensin II (Ang II)-induced cardiac hypertrophy, but little is known about the underlying mechanism that results in EGFR activation. In this study, we aimed to confirm the important role of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) in Ang II-induced EGFR activation and subsequent cardiac hypertrophy by upregulating expression of a disintegrin and metalloproteinase (MMP)-17 (ADAM17).

Methods: Small interference RNA (siRNA) was adopted to knock down ADAM17 or Nox4 expression.

View Article and Find Full Text PDF

A quantitative and rapid detection method for rotavirus in water samples was developed using immunomagnetic separation combined with quantitative reverse transcription-polymerase chain reaction (IMS-RT-qPCR). Magnetic beads coated with antibodies against representative group A rotavirus were used to capture and purify intact rotavirus particles in both artificial and real environmental water sample matrix. Compared to extracting RNA using commercial kits and RT-qPCR assay, the developed IMS-RT-qPCR method increased the detection sensitivity by about one order of magnitude when applied in clean water, with a detection limit of 3.

View Article and Find Full Text PDF

Developing neural circuits face the dual challenge of growing in an activity-induced fashion and maintaining stability through homeostatic mechanisms. Compared to our understanding of homeostatic regulation of excitatory synapses, relatively little is known about the mechanism mediating homeostatic plasticity of inhibitory synapses, especially that following activity elevation. Here, we found that elevating neuronal activity in cultured hippocampal neurons for 4 h significantly increased the frequency and amplitude of mIPSCs, before detectable change at excitatory synapses.

View Article and Find Full Text PDF

A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall.

View Article and Find Full Text PDF

Neural circuit development requires concurrent morphological and functional changes. Here, we identify coordinated and inversely correlated changes in dendritic morphology and mEPSC amplitude following increased neural activity. We show that overexpression of beta-catenin, a molecule that increases total dendritic length, mimics the effects of increased neuronal activity by scaling down mEPSC amplitudes, while postsynaptic expression of a protein that sequesters beta-catenin reverses the effects of activity on reducing mEPSC amplitudes.

View Article and Find Full Text PDF

1. Previous studies indicate that rutaecarpine blocks increases in blood pressure and inhibits vascular hypertrophy in experimentally hypertensive rats. The aim of the present study was to determine whether the effects of rutaecarpine are related to activation of prolylcarboxypeptidase (PRCP).

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP), the predominant neurotransmitter in capsaicin-sensitive sensory nerves, is a potent vasodilator and inhibits proliferation of vascular smooth muscle cells. Previous investigations have demonstrated that the hypotensive effect of rutaecarpine (Rut) is associated to stimulation of CGRP synthesis and release via activation of the vanilloid receptor subtype 1 (VR1) in the phenol-induced hypertensive rat. This study tested whether the depressor effect and inhibiting vascular hypertrophy of Rut is mediated by endogenous CGRP in 2-kidney, 1-clip (2K1C) hypertensive rats.

View Article and Find Full Text PDF

Aiming at a method of risk analysis for drinking water treatment, a statistical conceptual model was developed to simulate the pre-chlorination process in waterworks, which involved the reactions among chlorine residuals, ammonia nitrogen, bromide and organic matter. The model was calibrated and verified with field data from a typical waterworks. The model could well predict the probability distribution of the concentration of permanganate index, ammonia nitrogen, chloroform, bromodichloromethane, chlorodibromomethane and bromoform in the pre-chlorination process.

View Article and Find Full Text PDF