Ying Yong Sheng Tai Xue Bao
January 2020
The success of microbial enhanced oil recovery (MEOR) relies on complex microbial processes. Nevertheless, the contribution and mechanism of in-situ denitrification to microbial oil recovery remain unclear. In this study, eight denitrifying bacterial strains, designated T1, D1, D44, D46, D15, S1, S2 and S6, were isolated from the produced water of Xinjiang Oilfield, China, by a double layered plate method.
View Article and Find Full Text PDFThe growth and activity of sulfate-reducing prokaryotes (SRP) in oilfield environments could produce large amounts of HS, leading to multifaceted problems, including oilfield souring and microbially-influenced corrosion, yet knowledge about the diversity and physiology of SRP therein was quite limited. To further understand the phenotypic characteristics of SRP residing in an offshore high-temperature oilfield at Bohai Bay, China, and to explore the potential methods for control of SRP-mediated problems, we isolated, using Hungate techniques, a thermotolerant, halotolerant SRP strain, designated BQ, from the produced water of a high-temperature. We also presented the phenotypic features of BQ, and investigated the efficacy of five biocides, or metabolic inhibitors, in suppressing the sulfidogenic activity of BQ.
View Article and Find Full Text PDFInjection of alkali, surfactant and polymer (ASP) into oil reservoir can substantially increase oil recovery compared with water-flooding strategy. However, the effects of these agents on the microbial diversity and community structure, which is important for water management and corrosion control in oil industry, are hitherto poorly understood. Here, we disclosed the microbial diversity and community structure in the produced water collected from four producing wells of an ASP-flooded oilfield at Daqing, China, using high-throughput sequencing technique.
View Article and Find Full Text PDFA four-year simulated nitrogen (N) deposition experiment involving nine N gradients and two N deposition frequencies (N was added either twice yearly or monthly) was conducted in Inner Mongolian grassland, to examine the effects of frequency and intensity of N addition on pH and the contents of carbon, nitrogen and phosphorus in soil. The results indicated that the soil pH and total phosphorus content, regardless of the N addition frequency, gradually decreased with the increase of N addition intensity. By contrast, the contents of soil available nitrogen and available phosphorus showed an increasing trend, while no significant variation in dissolved organic carbon (DOC) content was observed, and the contents of soil total carbon and total nitrogen had no change.
View Article and Find Full Text PDFSulfate-reducing bacteria (SRB) are widely existed in oil production system, and its H2S product inhibits rhamnolipid producing bacteria. In-situ production of rhamnolipid is promising for microbial enhanced oil recovery. Inhibition of SRB, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl were investigated.
View Article and Find Full Text PDFBiosurfactant-facilitated oil recovery is one of the most important aspects of microbial enhanced oil recovery (MEOR). However, the biosurfactant production by biosurfactant-producing microorganisms, most of which are aerobes, is severely suppressed due to the in-situ anoxic conditions within oil reservoirs. In this research, we successfully engineered a strain JD-3, which could grow rapidly and produce lipopeptide under anoxic conditions, by protoplast confusion using a Bacillus amyloliquefaciens strain BQ-2 which produces biosurfactant aerobically, and a facultative anaerobic Pseudomonas stutzeri strain DQ-1 as parent strains.
View Article and Find Full Text PDFTo compare the microbial compositions and diversities in soils of different forest ages and types in Baotianman forest, Henan Province, China, genomic DNA of forest soils was extracted for amplifying the 16S rRNA V4 hyper variable region by PCR and sequencing by Illumina MiSeq. The BIPES, UCHIME and QIIME were employed to analyze the soil bacterial community. It was shown that 60 phyla were identified, with Proteobacteria, Acidobacteria, and Verrucomicrobia representing the most dominant lineages and accounting for 29%, 18.
View Article and Find Full Text PDFGrowth and metabolic activity of sulfate-reducing bacteria (SRB) can result in souring of oil reservoirs, leading to various problems in aspects of environmental pollution and corrosion. Nitrate addition and management of nitrate-reducing bacteria (NRB) offer potential solutions to controlling souring in oil reservoirs. In this paper, a facultive chemolithotrophic NRB, designated as DNB-8, was isolated from the produced fluid of a water-flooded oil reservoir at Daqing oilfield.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
March 2013
Pseudomonas, due to its diversity in habitat and metabolic type, makes it have broad prospects applying in bioremediation, bioconversion, and biocontrol, while the introduction of exogenous gene is the key link to genetically modified Pseudomonas. The preparation and transformation of competent cells are the important methodological basis of the introduction of exogenous gene. In this paper, three Pseudomonas strains (P.
View Article and Find Full Text PDFBy the method of space-for-time Substitution, and taking the matured (>200 years old) and over-matured (>200 years old) primary broadleaved-Pinus koraiensis forests and, their secondary forests at different succession stages (20-, 30-, 50-, 80-, and 100 years old Betula platphylla forests) in Changbai Mountains of Northeast China as test objects, this paper studied the temporal variations of soil organic carbon, soil microbial biomass, and soil enzyme activities during the secondary succession of primary broadleaved-Pinus koraiensis forests in the Mountains. Under the 20- and 80 years old B. platphylla forests, the soil organic carbon content in humus layer was the highest (154.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
February 2012
Elevated atmospheric CO2 concentration may affect the oxidation rate of methane (CH4 ) in forest soil. In this study, the effects of a 6-year exposure to elevated CO2 concentration (500 micromol x mol(-1)) on the soil microbial process of CH4 oxidation under Quercus mongolica seedlings were investigated with open top chamber (OTC), and specific 16S rRNA and pmoA gene fragment primers were adopted to analyze the diversity and abundance of soil methanotrophs. Comparing with that under ambient CO2 and open-air, the soil methane consumption under elevated atmospheric CO2 during growth season was reduced by 4% and 22%, respectively.
View Article and Find Full Text PDF