This data article describes the "Typical Regional Activity Patterns" (TRAP) dataset, which is based on the Tackling Key Problems in Air Pollution Control Program. In order to explore the interaction between air pollution and physical activity, we collected activity patterns of 9,221 residents with different occupations and lifestyles for three consecutive days in typical regions (Jinan and Baoding) where air pollutant concentrations were higher than those in neighboring areas. The TRAP dataset consists of two aspects of information: demographic indicators (personal information, occupation, personal habits, and living situation) and physical activity pattern data (activity location and intensity); additionally, the exposure measures of physical activity patterns are included, which data users can match to various endpoints for their specific purpose.
View Article and Find Full Text PDFPolymer-based composites are widely used in microelectronics and wireless communications, which require high thermal conductivity and low dielectric loss for effective heat dispersion and signal transmission. Different lengths of hydroxyl silicone oil chains modified boron nitride/silicone rubber composites were explored and prepared in this work. Experiments demonstrate that the long-chain modified BN improves the thermal conductivity and decreases the dielectric loss of composites.
View Article and Find Full Text PDFOptimal design and fabrication of novel devices for high-performance optofluidic applications is a key issue for the development of advanced lab-on-a-chip systems. Parallel cell counting with a high success rate and simple mode of operation is a challenging goal. Current cell-counting methods, using optical waveguides or flow cytometry, typically require a precise coupling of the probe light and involve complex operations.
View Article and Find Full Text PDFA simple strategy to realize new controllable 3D microstructures and a novel method to reversibly trapping and releasing microparticles are reported. This technique controls the height, shape, width, and arrangement of pillar arrays and realizes a series of special microstructures from 2-pillar-cell to 12 cell arrays, S-shape, chain-shape and triangle 3-cell arrays by a combined top down/bottom up method: laser interference lithography and capillary force-induced assembly. Due to the inherent features of this method, the whole time is less than 3 min and the fabricated area determined by the size of the laser beam can reach as much as 1 cm(2) , which shows this method is very simple, rapid, and high-throughput.
View Article and Find Full Text PDFComposition modification and surface microstructures have been widely utilized in interface science to improve the surface performance. In this paper, we observed a significant improvement of oil contact angle (CA) from 66 ± 2° to 120 ± 4° by introducing a radical silanol group on a flat PDMS surface through oxygen plasma pretreatment. By combining surface microstructures and plasma modification, we produced three kinds of superoleophobic surfaces: 20 μm pitch micropillar arrays, 2.
View Article and Find Full Text PDFIn this Letter, we report the improved light outcoupling efficiency of conventional white organic light-emitting devices (OLEDs) by a kind of multifunctional film with both antireflective and superhydrophobic ability. This film consisted of regular polydimethylsiloxane (PDMS) nanopillar arrays, which were readily batch produced by low-cost imprint lithography. The nanopillar arrays could effectively eliminate the light total reflection and enhance the device efficiency of OLEDs by producing the gradual refractive index due to the decreasing material density from glass to air.
View Article and Find Full Text PDFIn this paper, one simple method to control two-direction anisotropic wetting by regular micropearl arrays was demonstrated. Various micropearl arrays with large area were rapidly fabricated by a kind of improved laser interference lithography. Specially, we found that the parallel contact angle (CA) theta(2) decreased from 93 degrees to 67 degrees as the intensity ratio of four laser beams increased from 2:1 to 30:1, while the perpendicular CA theta(1) determined by the thickness of the resin remained constant.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
February 2010
A novel biodegradable poly(sebacate-glycerol-citrate) (PGSC) elastomer with functional groups was prepared in this study. First, moldable mixtures were obtained by mixing citric acid with the poly(glycerol-sebacate) (PGS) pre-polymers synthesized in our lab. The PGSC elastomers were obtained from moldable mixtures that were thermally cured in the moulds.
View Article and Find Full Text PDF