Nanomaterials (Basel)
August 2021
As a smart stimulus-responsive material, hydrogel has been investigated extensively in many research fields. However, its mechanical brittleness and low strength have mattered, and conventional photoinitiators used during the polymerization steps exhibit high toxicity, which limits the use of hydrogels in the field of biomedical applications. Here, we address the dual functions of graphene quantum dots (GQDs), one to trigger the synthesis of hydrogel as photoinitiators and the other to improve the mechanical strength of the as-synthesized hydrogel.
View Article and Find Full Text PDFVarious bio-logic gates have been studied intensively to overcome the rigidity of single-function silicon-based logic devices arising from combinations of various gates. Here, a simple control tool using electrochemical signals from quantum dots (QDs) was constructed using DNA and organic materials for multiple logic functions. The electrochemical redox current generated from QDs was controlled by the DNA structure.
View Article and Find Full Text PDFWe demonstrate an analog type logical device that combines metalloprotein and organic/inorganic materials and can make an interactive analog decision. Myoglobin is used as a functional biomolecule to generate electrochemical signals, and its original redox signal is controlled with various mercapto-acids by the distance effect between myoglobin and a metal surface in the process of electron transfer. Controlled signals are modulated with the introduction of inorganic materials including nanoparticles and metal ions.
View Article and Find Full Text PDFThe films organized with biomolecules and organic materials are important elements for developing bioelectronic devices according to their electron transfer property. Until now, several concepts of techniques have been accomplished to be used for developing biomemory devices. However it is difficult to detect the current signal from the electron transfer between biomolecules and the substrate in these fabricated films.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2013
In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays.
View Article and Find Full Text PDFWe developed the nanoscale biofilm consisting of cytochrome f self-assembled on 2-MAA layer to apply bioelectronic devices. As cytochrome f has redox property, it can be possible to apply bioelectronic devices. The fabricated biofilm was confirmed by SPR and STM experiment.
View Article and Find Full Text PDF