Publications by authors named "Si-Tahar M"

The respiratory tract hosts a diverse microbial community whose composition varies with anatomical location and throughout life. Rothia mucilaginosa, a common commensal of the upper respiratory tract and oral cavity, has recently been recognized for its ability to inhibit bacteria-triggered pro-inflammatory responses. However, its role in modulating the immune response to viral infections such as influenza A virus (IAV) pneumonia, remains unknown.

View Article and Find Full Text PDF

Influenza A virus (IAV) is one of the leading causes of respiratory infections. The lack of efficient anti-influenza therapeutics requires a better understanding of how IAV interacts with host cells. Alveolar macrophages are tissue-specific macrophages that play a critical role in lung innate immunity and homeostasis, yet their role during influenza infection remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Neutrophil subsets with regulatory properties are often seen as harmful to immune responses against tumors and infections, but new findings suggest otherwise in cases of severe viral respiratory infections (VRI).
  • A significant population of neutrophils expressing programmed death-ligand 1 (PD-L1) was identified in humans and mice with VRI, exhibiting strong regulatory functions but diminished antimicrobial capabilities.
  • Depleting these PD-L1 neutrophils or blocking their function during VRI led to worse outcomes, indicating that they play a crucial role in managing inflammation and could be potential targets for future treatments.
View Article and Find Full Text PDF

The hypoxia response pathway enables adaptation to oxygen deprivation. It is mediated by hypoxia-inducible factors (HIF), which promote metabolic reprogramming, erythropoiesis, angiogenesis and tissue remodeling. This led to the successful development of HIF-inducing drugs for treating anemia and some of these molecules are now in clinic.

View Article and Find Full Text PDF

The increasing prevalence of multidrug-resistant (PA) is a significant concern for chronic respiratory disease exacerbations. Host-directed drugs, such as flagellin, an agonist of toll-like receptor 5 (TLR5), have emerged as a promising solution. In this study, we evaluated the prophylactic intranasal administration of flagellin against a multidrug-resistant strain of PA (PA) in mice and assessed the possible synergy with the antibiotic gentamicin (GNT).

View Article and Find Full Text PDF

is a major hospital-associated pathogen that can cause severe infections, most notably in patients with cystic fibrosis (CF) or those hospitalized in intensive care units. Given its remarkable ability to resist antibiotics, eradication has grown more challenging. Therefore, there is an urgent need to discover and develop new strategies that can counteract -resistant strains.

View Article and Find Full Text PDF

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism.

View Article and Find Full Text PDF

The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies.

View Article and Find Full Text PDF

This study describes the synthesis and evaluation of different imprinted hydrogels using ribavirin as template molecule. Ribavirin serves as a model molecule because it possesses a broad-spectrum antiviral effect against RNA viruses, which are expected as emerging viruses. The choice of monomers enables to stabilize the pre-polymerization complex and to synthesize biocompatible polymers.

View Article and Find Full Text PDF

Inflammation, oxidative stress, and protease/protease inhibitor imbalance with excessive production of proteases are factors associated with pathogenesis of the chronic obstructive pulmonary disease (COPD). In this study, we report that kallikrein-related peptidase 5 (KLK5) is a crucial protease involved in extracellular matrix (ECM) remodeling and bronchial epithelial repair after injury. First, we showed that KLK5 degrades the basal layer formed by culture of primary bronchial epithelial cells from COPD or non-COPD patients.

View Article and Find Full Text PDF

Our therapeutic arsenal against viruses is very limited and the current pandemic of SARS-CoV-2 highlights the critical need for effective antivirals against emerging coronaviruses. Cellular assays allowing a precise quantification of viral replication in high-throughput experimental settings are essential to the screening of chemical libraries and the selection of best antiviral chemical structures. To develop a reporting system for SARS-CoV-2 infection, we generated cell lines expressing a firefly luciferase maintained in an inactive form by a consensus cleavage site for the viral protease 3CL of coronaviruses, so that the luminescent biosensor is turned on upon 3CL expression or SARS-CoV-2 infection.

View Article and Find Full Text PDF

Excessive lung inflammation and airway epithelium damage are hallmarks of cystic fibrosis (CF) disease. It is unclear whether lung inflammation is related to an intrinsic defect in the immune response or to chronic infection. We aimed to determine whether TLR5-mediated response is defective in the CF airway epithelium.

View Article and Find Full Text PDF

Excessive lung inflammation and airway epithelial damage are hallmarks of human inflammatory lung diseases, such as cystic fibrosis (CF). Enhancement of innate immunity provides protection against pathogens while reducing lung-damaging inflammation. However, the mechanisms underlying innate immunity-mediated protection in the lung remain mysterious, in part because of the lack of appropriate animal models for these human diseases.

View Article and Find Full Text PDF

The 'flu, caused mostly by influenza A and B viruses, represents a major public health issue. Despite vaccines and antiviral drugs, the therapeutic arsenal is still suboptimal. Recently, several studies have reported the antiviral and anti-inflammatory properties of several host metabolites.

View Article and Find Full Text PDF

Metabolism and immunity have long been classified in distinct research fields; however, the concept of immunometabolism has recently highlighted their close relationship. Immune cells in an infectious context undergo a metabolic reprogramming that leads to the accumulation of metabolites. Some of these metabolites, called metabokines, play a crucial role in anti-infectious immunity by having immunoregulatory and antimicrobial defence properties.

View Article and Find Full Text PDF

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease.

View Article and Find Full Text PDF

The coronavirus infectious disease-2019 (COVID-19) pandemic has led to an unprecedented shortage of healthcare resources, primarily personal protective equipment like surgical masks, and N95/filtering face piece type 2 (FFP2) respirators. Reuse of surgical masks and N95/FFP2 respirators may circumvent the supply chain constraints and thus overcome mass shortage. Methods, design, setting, and measurement: Herein, we tested the effects of dry- and moist-air controlled heating treatment on structure and chemical integrity, decontamination yield, and filtration performance of surgical masks and FFP2 respirators.

View Article and Find Full Text PDF

Background: Bacterial colonization in cystic fibrosis (CF) lungs has been directly associated to the loss of CFTR function, and/or secondarily linked to repetitive cycles of chronic inflammation/infection. We hypothesized that altered molecular properties of mucins could contribute to this process.

Methods: Newborn CFTR and CFTR were sacrificed before and 6 h after inoculation with luminescent Pseudomonas aeruginosa into the tracheal carina.

View Article and Find Full Text PDF
Article Synopsis
  • - CD1d-restricted invariant Natural Killer T (iNKT) cells are a special type of T cells that have important immune functions, but their development into specific subtypes is not fully understood.
  • - A study using single-cell transcriptomic analysis reveals a greater diversity in thymic iNKT cells, particularly in iNKT1 cells, and suggests iNKT2 cells play a key role in the development of iNKT1 and iNKT17 subsets.
  • - The research identifies FHL2 as a key regulator in the specification of iNKT1 cells, highlighting the complex changes in the transcriptional networks that influence iNKT cell functions.
View Article and Find Full Text PDF

COVID-19 includes lung infection ranging from mild pneumonia to life-threatening acute respiratory distress syndrome (ARDS). Dysregulated host immune response in the lung is a key feature in ARDS pathophysiology. However, cellular actors involved in COVID-19-driven ARDS are poorly understood.

View Article and Find Full Text PDF