Publications by authors named "Si-Jia Hao"

Background: The safety of COVID-19 vaccines has been clarified in clinical trials; however, some immunocompromised patients, such as myasthenia gravis (MG) patients, are still hesitant to receive vaccines. Whether COVID-19 vaccination increases the risk of disease worsening in these patients remains unknown. This study aims to evaluate the risk of disease exacerbation in COVID-19-vaccinated MG patients.

View Article and Find Full Text PDF

Four pairs of chiral supramolecular coordination cages were facilely synthesized, and they could efficiently inhibit amyloid-β (Aβ) aggregation with a high inhibition rate of 0.64-0.86.

View Article and Find Full Text PDF

We investigated the thermal oxidation process of nanographene using activated carbon fibers (ACFs) by thermogravimetry (TG), X-ray photoemission spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and electrical conductance measurements. The oxidation process started from the edge of nanographene with the formation of phenol (-OH) or ether (C-O-C) groups attached to edge carbon atoms, as verified by the XPS and NEXAFS results. While the TG results indicated a decrease in the size of the nanographene sheet during the oxidation process, the intensity of the edge-state peak, i.

View Article and Find Full Text PDF

We investigated the magnetic and electronic properties of nanographene and its charge transfer effect, using near edge X-ray absorption fine structure (NEXAFS), magnetic susceptibility and ESR measurements, and elemental analysis, with the employment of nanoporous carbon, which consists of a three dimensional disordered network of loosely stacked nanographene sheets, in relation to the host-guest interaction with HNO3 as the electron-accepting guest. The adsorption of electron acceptor HNO3 decreases the intensity of the edge state peak in NEXAFS as a result of the charge-transfer-induced Fermi energy downshift, in agreement with the decrease in the edge-state spin concentration, and it also induces the structural expansion, which makes the inter-nanographene sheet distance elongated, resulting in weakening of the inter-nanographene-sheet antiferromagnetic interaction as evidenced by the decrease in the Weiss temperature. In addition, the decomposition of HNO3, which takes place with the electron-rich edge state as an oxidation catalyst, results in the creation of oxygen/nitrogen-containing functional groups bonded to the periphery of the nanographene sheets.

View Article and Find Full Text PDF

Graphene oxide, a two-dimensional aromatic scaffold decorated by oxygen-containing functional groups, possesses rich chemical properties and may present a green alternative to precious metal catalysts. Graphene oxide-based carbocatalysis has recently been demonstrated for aerobic oxidative reactions. However, its widespread application is hindered by the need for high catalyst loadings.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondojj5s81s75srj940vgacps2h2cmo8gr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once