Publications by authors named "Si-Hoon Kim"

Compared with the large plastic deformation observed in ductile metals and organic materials, inorganic semiconductors have limited plasticity (<0.2%) due to their intrinsic bonding characters, restricting their widespread applications in stretchable electronics. Herein, the solution-processed synthesis of ductile α-Ag S thin films and fabrication of all-inorganic, self-powered, and stretchable memory devices, is reported.

View Article and Find Full Text PDF

Metal halide perovskites have been actively studied as promising materials in optoelectronic devices because of their superior optical and electrical properties and have also shown considerable potential for flexible devices because of their good mechanical properties. However, the large hole injection barrier and exciton quenching between the perovskite emitter and poly(3,4-ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS) can lead to the reduction in device efficiency. Here, a nonconductive fluorosurfactant, Zonyl FS-300 (Zonyl), is introduced into the PEDOT:PSS hole transport layer, which reduces the hole injection barrier and exciton quenching at the PEDOT:PSS/perovskite interface.

View Article and Find Full Text PDF

The mechanical flexibility of perovskite solar cells as well as high power conversion efficiency is attracting increasing attention. In addition to existing empirical approaches, such as cyclic bending tests, in this study we report the tensile properties of the perovskite materials themselves. Measuring the tensile properties of free-standing perovskite materials is critical because (1) tensile properties represent the realistic mechanical properties of the film-type perovskite layer in the solar cells including the effects of various defects, and (2) deformation behavior of the perovskite layer at any deformed state of the solar cells can be analyzed using solid mechanics with the tensile properties as input.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskites have been investigated extensively for use in perovskite-based solar cells and light-emitting diodes (LEDs) because of their excellent electrical and optical properties. Although the flexibility of perovskite LEDs has been studied through empirical methods such as cyclic bending tests, the flexibility of the perovskite layer has not been investigated systemically. Here, flexible and semitransparent perovskite LEDs are fabricated: a PEDOT:PSS anode and Ag nanowire cathode allow for flexible and semitransparent devices, while the use of a conjugated polyelectrolyte as an interfacial layer reduces the electron injection barrier between the cathode and the electron transport layer (SPW-111), resulting in enhanced device efficiency.

View Article and Find Full Text PDF

Various wearable electronic devices have been developed for extensive outdoor activities. The key metrics for these wearable devices are high touch sensitivity and good mechanical and thermal stability of the flexible touchscreen panels (TSPs). Their dielectric constants (k) are important for high touch sensitivities.

View Article and Find Full Text PDF

The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs.

View Article and Find Full Text PDF

This work demonstrates the design, synthesis, characterization, and study of the electrochemical performance of a novel binder for silicon (Si) anodes in lithium-ion batteries (LIBs). Polymeric binders with three different functional groups, namely, carboxylic acid (COOH), carboxylate (COO(-)), and hydroxyl (OH), in a single polymer backbone have been synthesized and characterized via (1)H NMR and FTIR spectroscopies. A systematic study that involved varying the ratio of the functional groups indicated that a material with an acid-to-alcohol molar ratio of 60:40 showed promise as an efficient binder with an initial columbic efficiency of 89%.

View Article and Find Full Text PDF

A secreted MUC6 mucin is reported to be expressed highly in the stomach and gall bladder. In previous our study, the five minisatellites were identified and a significant association between MUC6-MS5 alleles and gastric cancer was reported. Because of aberrant MUC6 expression is often found in gastrointestinal diseases, we evaluated a relationship between MUC6-MS5 and susceptibility to colorectal cancers.

View Article and Find Full Text PDF

BORIS is a member of the cancer-testis gene family that comprises genes normally expressed only in testis but abnormally activated in different malignancies. In this study, we examined the relation between BORIS expression and gastric cancer, which is the most common cancer in Korea. Abnormal BORIS expression in the patient's gastric cancer tissues was observed.

View Article and Find Full Text PDF