We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light.
View Article and Find Full Text PDFDouble ionization of helium by a single intense (above 10^{18} W/cm^{2}) linearly polarized extreme ultraviolet laser pulse is studied by numerically solving the full-dimensional time-dependent Schrödinger equation. For the laser intensities well beyond the perturbative limit, novel gridlike interference fringes are found in the correlated energy spectrum of the two photoelectrons. The interference can be traced to the multitude of two-electron wave packets emitted at different ionization times.
View Article and Find Full Text PDF