Publications by authors named "Si Young Yie"

Bone scans play an important role in skeletal lesion assessment, but gamma cameras exhibit challenges with low sensitivity and high noise levels. Deep learning (DL) has emerged as a promising solution to enhance image quality without increasing radiation exposure or scan time. However, existing self-supervised denoising methods, such as Noise2Noise (N2N), may introduce deviations from the clinical standard in bone scans.

View Article and Find Full Text PDF

Purpose: Effective radiation therapy requires accurate segmentation of head and neck cancer, one of the most common types of cancer. With the advancement of deep learning, people have come up with various methods that use positron emission tomography-computed tomography to get complementary information. However, these approaches are computationally expensive because of the separation of feature extraction and fusion functions and do not make use of the high sensitivity of PET.

View Article and Find Full Text PDF
.

Nucl Med Mol Imaging

December 2020

Purpose: Early deep-learning-based image denoising techniques mainly focused on a fully supervised model that learns how to generate a clean image from the noisy input (noise2clean: N2C). The aim of this study is to explore the feasibility of the self-supervised methods (noise2noise: N2N and noiser2noise: Nr2N) for PET image denoising based on the measured PET data sets by comparing their performance with the conventional N2C model.

Methods: For training and evaluating the networks, F-FDG brain PET/CT scan data of 14 patients was retrospectively used (10 for training and 4 for testing).

View Article and Find Full Text PDF