Cadmium (Cd) is a prevalent heavy metal contaminant that can cause centrosome amplification (CA) and cancer. Since CA can initiate tumorigenesis, it is plausible that cadmium initiates tumorigenesis via CA. The present study investigated the signaling pathways underlying CA by Cd.
View Article and Find Full Text PDFInflammation is implicated in the development of diabetic complications including vascular pathology. Centrosome is known to play a role in cell secretion. We have reported that diabetes can trigger centrosome amplification (CA).
View Article and Find Full Text PDFBackground: Hexavalent chromium can promote centrosome amplification (CA) as well as tumorigenesis. Since CA can lead to tumorigenesis, it is plausible that the chromium promotes the development of cancer via CA. In the present study, we investigated the signaling pathways of the chromium-induced CA.
View Article and Find Full Text PDFDiabetes not only increases the risk for cancer but also promotes cancer metastasis. Centrosome amplification (CA) is sufficient to initiate tumorigenesis and can enhance the invasion potential of cancer cells. We have reported that diabetes can induce CA, with diabetic pathophysiological factors as the triggers, which involves the signaling of nucleophosmin (NPM).
View Article and Find Full Text PDFCentrosome amplification (CA) refers to a numerical increase in centrosomes resulting in cells with more than two centrosomes. CA has been shown to initiate tumorigenesis and increase the invasive potential of cancer cells in genetically modified experimental models. Hexavalent chromium is a recognized carcinogen that causes CA and tumorigenesis as well as promotes cancer metastasis.
View Article and Find Full Text PDF