Publications by authors named "Si On Park"

TLR agonists have emerged as an efficient cancer vaccine adjuvant system that induces robust immune responses. L-pampo™, a proprietary vaccine adjuvant of TLR2 and TLR3 agonists, promotes strong humoral and cellular immune responses against infectious diseases. In this study, we demonstrate that vaccines formulated with L-pampo™ affect the recruitment and activation of dendritic cells (DCs) in draining lymph nodes (dLNs) and leading to antigen-specific T-cell responses and anti-tumor efficacy.

View Article and Find Full Text PDF

Background: Parkin dysfunction associated with the progression of parkinsonism contributes to a progressive systemic skeletal disease characterized by low bone mineral density. However, the role of parkin in bone remodeling has not yet been elucidated in detail.

Result: We observed that decreased parkin in monocytes is linked to osteoclastic bone-resorbing activity.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is an important lipid mediator that regulates a diverse range of intracellular cell signaling pathways that are relevant to tissue engineering and regenerative medicine. However, the precise function of S1P in dental pulp stem cells (DPSCs) and its osteogenic differentiation remains unclear. We here investigated the function of S1P/S1P receptor (S1PR)-mediated cellular signaling in the osteogenic differentiation of DPSCs and clarified the fundamental signaling pathway.

View Article and Find Full Text PDF

TNF-α plays a crucial role in cancer initiation and progression by enhancing cancer cell proliferation, survival, and migration. Even though the known functional role of AWP1 (zinc finger AN1 type-6, ZFAND6) is as a key mediator of TNF-α signaling, its potential role in the TNF-α-dependent responses of cancer cells remains unclear. In our current study, we found that an AWP1 knockdown using short hairpin RNAs increases the migratory potential of non-aggressive MCF-7 breast cancer cells with no significant alteration of their proliferation in response to TNF-α.

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) accompanies inflammatory cell infiltration, fibrosis, and ultimately calcification of the valve leaflets. We previously demonstrated that dipeptidyl peptidase-4 (DPP-4) is responsible for the progression of aortic valvular calcification in CAVD animal models. As evogliptin, one of the DPP-4 inhibitors displays high specific accumulation in cardiac tissue, we here evaluated its therapeutic potency for attenuating valvular calcification in CAVD animal models.

View Article and Find Full Text PDF

Many stresses induce the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum, a phenomenon known as ER stress. In response to ER stress, cells initiate a protective response, known as unfolded protein response (UPR), to maintain cellular homeostasis. The UPR sensor, inositol-requiring enzyme 1 (IRE1), catalyzes the cytoplasmic splicing of bZIP transcription factor-encoding mRNAs to activate the UPR signaling pathway.

View Article and Find Full Text PDF

The interleukin-22 (IL-22) signaling pathway is well known to be involved in the progression of various cancer types but its role in bone metastatic breast cancer remains unclear. We demonstrate using human GEO profiling that bone metastatic breast cancer displays elevated interleukin-22 receptor 1 (IL-22R1) and sphingosine-1-phosphate receptor 1 (S1PR1) expression. Importantly, IL-22 stimuli promoted the expression of IL-22R1 and S1PR1 in aggressive MDA-MB-231 breast cancer cells.

View Article and Find Full Text PDF