Cocrystallization has emerged as a promising formulation strategy for modulating transdermal drug absorption by enhancing solubility and permeability. However, challenges related to cocrystal dissociation in the semi-solid state need to be addressed to mitigate regulatory concerns before the widespread implementation of topical cocrystal products in clinical practice. This study aimed to develop oil-based topical formulations incorporating cocrystals with distinct thermodynamic stabilities, followed by investigating the roles of different structurally similar coformers and oily vehicles on their physicochemical properties.
View Article and Find Full Text PDFThe therapeutic potential of pharmaceutical cocrystals in intranasal applications remains largely unexplored despite progressive advancements in cocrystal research. We present the application of spray freeze drying (SFD) in successful fabrication of a favipiravir-pyridinecarboxamide cocrystal nasal powder formulation for potential treatment of broad-spectrum antiviral infections. Preliminary screening via mechanochemistry revealed that favipiravir (FAV) can cocrystallize with isonicotinamide (INA), but not nicotinamide (NCT) and picolinamide (PIC) notwithstanding their structural similarity.
View Article and Find Full Text PDFWhile cocrystal engineering is an emerging formulation strategy to overcome drug delivery challenges, its therapeutic potential in non-oral applications remains not thoroughly explored. We herein report for the first time the successful synthesis of a cocrystal for remdesivir (RDV), an antiviral drug with broad-spectrum activities against RNA viruses. The RDV cocrystal was prepared with salicylic acid (SA) via combined liquid-assisted grinding (LAG) and thermal annealing.
View Article and Find Full Text PDFFormulating pharmaceutical cocrystals as inhalable dosage forms represents a unique niche in effective management of respiratory infections. Favipiravir, a broad-spectrum antiviral drug with potential pharmacological activity against SARS-CoV-2, exhibits a low aqueous solubility. An ultra-high oral dose is essential, causing low patient compliance.
View Article and Find Full Text PDFThe kinetic entrapment of molecules in an amorphous phase is a common obstacle to cocrystal screening using rapid solvent removal, especially for drugs with a moderate or high glass-forming ability (GFA). The aim of this study was to elucidate the effects of the coformer's GFA and annealing conditions on the nature of amorphous phase transformation to the cocrystal counterpart. Attempts were made to cocrystallize voriconazole (VRC) with four structural analogues, namely fumaric acid (FUM), tartaric acid (TAR), malic acid (MAL), and maleic acid (MAE).
View Article and Find Full Text PDFRetinal diseases, such as age-related macular degeneration and diabetic retinopathy, are the leading causes of blindness worldwide. The mainstay of treatment for these blinding diseases remains to be surgery, and the available pharmaceutical therapies on the market are limited, partially owing to various biological barriers in hindering the delivery of therapeutics to the retina. The nanoparticulate drug delivery system confers the capability for delivering therapeutics to the specific ocular targets and, hence, potentially revolutionizes the current treatment landscape of retinal diseases.
View Article and Find Full Text PDFWhile nanoparticulate drugs for deep lung delivery hold promise for particular disease treatments, their size-related physical instability and tendency of being exhaled during breathing remain major challenges to their inhaled formulation development. Here we report a viable method for converting drug nanosuspensions into inhalable, stable and redispersible nano-agglomerates through combined in-situ thermal gelation and spray drying. Itraconazole (ITZ) nanosuspensions were prepared by flash nanoprecipitation, and co-spray dried with two different grades of the gel-forming polymer, methylcellulose (MC M20 and MC M450) as protectants.
View Article and Find Full Text PDFWhile flash nanoprecipitation (FNP) has proven to be an extremely rapid and highly efficient nanoparticle fabrication process for hydrophobic drugs, physical instability associated with nonequilibrium molecular orientation of amphiphilic stabilizers (ASs) in nanoparticles remains a major snag in the general application of this nanotechnology, particularly for a drug with ACDLog P in the range of ∼2-9. This study was aimed at elucidating the costabilizing role of cholesterol (CLT) in the FNP of AS-stabilized nanoparticles of itraconazole (ITZ), a model drug with an ACDLog P of 4.35 ± 1.
View Article and Find Full Text PDF