Simultaneous optimization of photoluminescence quantum yield () and horizontally oriented dipoles () is considerably challenging for orange and red thermally activated delayed fluorescence (TADF) emitters, due to the conflicts between enhancing molecular rigidity and improving molecular planarity. Herein, a novel orange-red TADF emitter 10-(dipyrido[3,2-:2',3'-]phenazin-11-yl)-10-spiro[acridine-9,9'-fluorene] (SAF-2NP) was constructed with a donor-acceptor structure. The highly rigid donor and acceptor segments ensure the overall rigidity of the emitter.
View Article and Find Full Text PDFOwing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance.
View Article and Find Full Text PDFTwo novel bipolar deep-blue fluorescent emitters, IP-PPI and IP-DPPI, featuring different lengths of the phenyl bridge, were designed and synthesized, in which imidazo[1,2-a]pyridine (IP) and phenanthroimidazole (PI) were proposed as an electron acceptor and an electron donor, respectively. Both of them exhibit outstanding thermal stability and high emission quantum yields. All the devices based on these two materials showed negligible efficiency roll-off with increasing current density.
View Article and Find Full Text PDFWith the naturally separated frontier molecular orbitals, exciplexes are capable of thermally activated delayed fluorescence emitters for organic light-emitting diodes (OLEDs). And, the current key issue for exciplex emitters is improving their exciton utilization. In this work, a strategy of building exciplex emitters with three components is proposed to realize multiple reverse intersystem crossing (RISC) channels, improving their exciton utilization by enhancing upconversion of nonradiative triplet excitons.
View Article and Find Full Text PDFExciplexes are ideal candidates as effective thermally activated delayed fluorescence (TADF) emitters. However, efficient orange and red TADF exciplexes have been reported seldomly, because their significant non-radiative (NR) decay of excited states lead to unavoidable energy loss. Herein, we propose a novel strategy to construct efficient red TADF exciplexes by introducing phosphor as one component.
View Article and Find Full Text PDFCarbazole (Cz) is the one of the most popular electron donors to develop thermally activated delayed fluorescence (TADF) emitters, but additional groups are generally required in the molecules to enhance the steric hindrance between Cz and electron acceptor segments. To address this issue, we replaced Cz with its derivative 1,3,6,8-tetramethyl-carbazole (tMCz) to develop TADF emitters. Two novel compounds, 6-(4-(carbazol-9-yl)phenyl)-2,4-diphenylnicotinonitrile (CzPN) and 2,4-diphenyl-6-(4- (1,3,6,8-tetramethyl-carbazol-9-yl)phenyl) nicotinonitrile (tMCzPN) were designed and synthesized accordingly.
View Article and Find Full Text PDFA novel thermally activated delayed fluorescence (TADF) emitter 12,15-di(10-phenoxazin-10-yl)dibenzo[,]dipyrido[3,2-:2',3'-]phenazine (DPXZ-BPPZ) is developed for a highly efficient red organic light-emitting diode (OLED). With rigid and planar constituent groups and evident steric hindrance between electron-donor (D) and electron-acceptor (A) segments, DPXZ-BPPZ realizes extremely high rigidity to suppress the internal conversion process. Meanwhile, the highly twisted structure between D and A segments will also lead to an extremely small singlet-triplet energy split to DPXZ-BPPZ.
View Article and Find Full Text PDFIn this work, we propose a novel concept to develop two fluorophores 2-(10 H-phenothiazin-10-yl)thianthrene 5,5,10,10-tetraoxide (PTZ-TTR) and 2-(4-(10 H-phenothiazin-10-yl)phenyl)thianthrene 5,5,10,10-tetraoxide (PTZ-Ph-TTR) showing dual conformations for highly efficient single-emitter white organic light-emitting diodes (WOLEDs). Both molecules exist in two stable conformations. Their nearly orthogonal forms own lower energy levels and show thermally activated delayed fluorescence (TADF) characteristics, whereas their nearly planar conformers possess higher energy levels and show only prompt fluorescence.
View Article and Find Full Text PDFA new ternary acceptor (A)-donor (D)-acceptor (A) asymmetrically twisted deep-blue emitting molecule, PPI-2BI, was synthesized by attaching two electrophilic benzimidazole (BI) units to the C2 and N1 positions of a phenanthroimidazole (PI) donor unit. Profiting from the enhanced D-A electronic coupling, the electron injecting and transporting abilities of the new triangle-shaped A-D-A molecule are considerably improved and the molecule shows high photoluminescence (PL) and electroluminescence (EL) efficiencies. By using PPI-2BI as a non-doped emitting layer (EML), the resulting organic light-emitting device exhibits emission with color coordinates of (0.
View Article and Find Full Text PDFA novel molecular model of connecting electron-donating (D) and electron-withdrawing (A) moieties via a space-enough and conjugation-forbidden linkage (D-Spacer-A) is proposed to develop efficient non-doped thermally activated delayed fluorescence (TADF) emitters. 10-(4-(4-(4,6-diphenyl-1,3,5-triazin-2-yl) phenoxy) phenyl)-9,9-dimethyl-9,10-dihydroacridine (DMAC-o-TRZ) was designed and synthesized accordingly. As expected, it exhibits local excited properties in single-molecule state as D-Spacer-A molecular backbone strongly suppress the intramolecular charge-transfer (CT) transition.
View Article and Find Full Text PDFThe recent introduction of thermally activated delayed fluorescence (TADF) emitters is regarded as an important breakthrough for the development of high efficiency organic light-emitting devices (OLEDs). The planar D and A groups are generally used to construct TADF emitters for their rigid structure and large steric hindrance. In this work, it is shown that many frequently used nonaromatic (noncontinuous conjugation or without satisfying Hückel's rule) planar segments, such as 9,9-dimethyl-9,10-dihydroacridine, are actually pseudoplanar segments and have two possible conformations-a planar form and a crooked form.
View Article and Find Full Text PDFThermally activated delayed fluorescence (TADF) emitters of different colors commonly need different hosts, which cause the complexed device structure and low efficiency of all fluorescence white organic light-emitting devices (F-WOLEDs). To solve this, novel concept of employing TADF exciplex as universal host of TADF emitters with different colors was proposed. All blue, green, and orange devices based on the TADF exciplex host show much lower turn-on voltages, and comparable and even higher efficiencies than corresponding devices based on conventional hosts.
View Article and Find Full Text PDFTo improve the color purity of thermally activated delayed fluorescence (TADF) emitters, two isomeric compounds, oPTC (5'-(phenoxazin-10-yl)-[1,1':3',1″-terphenyl]-2'-carbonitrile) and mPTC (2'-(phenoxazin-10-yl)-[1,1':3',1″-terphenyl]-5'-carbonitrile), were designed and synthesized with same skeleton but different molecular restrictions. Both compounds exhibit similar highest occupied molecular orbital and lowest unoccupied molecular orbital distributions and energy levels, photophysical properties in nonpolar cyclohexane solution, and high external quantum efficiencies (19.9% for oPTC and 17.
View Article and Find Full Text PDF[reaction: see text] A new sensing mechanism based on C=N isomerization, which shows a very significant fluorescence enhancement to the metal cations in a simple and efficient way, is demonstrated. A coumarin derivative (L) containing a C=N group was designed as an example for illustration. The free ligand L is almost nonfluorescent due to the isomerization of C=N double bond in the excited state.
View Article and Find Full Text PDF