Publications by authors named "Si Ho Choi"

Echinochrome A (Ech A), a marine biosubstance isolated from sea urchins, is a strong antioxidant, and its clinical form, histochrome, is being used to treat several diseases, such as ophthalmic, cardiovascular, and metabolic diseases. Cancer-associated fibroblasts (CAFs) are a component of the tumor stroma and induce phenotypes related to tumor malignancy, including epithelial-mesenchymal transition (EMT) and cancer stemness, through reciprocal interactions with cancer cells. Here, we investigated whether Ech A modulates the properties of CAFs and alleviates CAF-induced lung cancer cell migration.

View Article and Find Full Text PDF

Although stem cells are a promising avenue for harnessing the potential of adipose tissue, conventional two-dimensional (2D) culture methods have limitations. This study explored the use of three-dimensional (3D) cultures to preserve the regenerative potential of adipose-derived stem cells (ADSCs) and investigated their cellular properties. Flow cytometric analysis revealed significant variations in surface marker expressions between the two culture conditions.

View Article and Find Full Text PDF

Human induced pluripotent stem cells and their differentiation into cardiac myocytes (hiPSC-CMs) provides a unique and valuable platform for studies of cardiac muscle structure-function. This includes studies centered on disease etiology, drug development, and for potential clinical applications in heart regeneration/repair. Ultimately, for these applications to achieve success, a thorough assessment and physiological advancement of the structure and function of hiPSC-CMs is required.

View Article and Find Full Text PDF

The comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.

View Article and Find Full Text PDF

The histone variant, macroH2A (mH2A) influences gene expression through epigenetic regulation. Tumor suppressive function of mH2A isoforms has been reported in various cancer types, but few studies have investigated the functional role of mH2A2 in breast cancer pathophysiology. This study aimed to determine the significance of mH2A2 in breast cancer development and progression by exploring its downstream regulatory mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on low-dose ionizing radiation (LDIR), which has been understudied compared to high-dose methods due to a lack of understanding of its molecular effects.
  • Researchers developed a method to profile RNA bound to the RNA-binding protein HuR after exposure to LDIR, indicating that LDIR can protect RNA from degradation.
  • The results suggest that LDIR influences post-transcriptional gene regulation and enhances cell viability by downregulating specific transcripts in human cell lines.
View Article and Find Full Text PDF

The complement system is a powerful innate immune system deployed in the immediate response to pathogens and cancer cells. Complement factor H (CFH), one of the regulators involved in the complement cascade, can interrupt the death of target cells. Certain types of cancer, such as breast cancer, can adopt an aggressive phenotype, such as breast cancer stem cells (BCSCs), through enhancement of the defense system against complement attack by amplifying various complement regulators.

View Article and Find Full Text PDF

Background: To assess the radiosensitivity of liver tumors harboring different genetic mutations, mouse liver tumors were generated in vivo through the hydrodynamic injection of clustered regularly interspaced short palindromic repeat/caspase 9 (CRISPR/Cas9) constructs encoding single-guide RNAs (sgRNAs) targeting , , , , , , or .

Methods: The plasmid vectors were delivered to the liver of adult C57BL/6 mice via hydrodynamic tail vein injection. The vectors were injected into 10 mice in each group.

View Article and Find Full Text PDF

Background: DNA methylation in the human genome is established and maintained by DNA methyltransferases (DNMTs). DNMT isoforms show differential expression by cell lineage and during development, but much remains to be elucidated about their shared and unique genomic targets.

Results: We examined changes in the epigenome following overexpression of 13 DNMT isoforms in HEK293T cells.

View Article and Find Full Text PDF

Epigenetic abnormalities affect tumor progression, as well as gene expression and function. Among the diverse epigenetic modulators, the histone methyltransferase G9a has been focused on due to its role in accelerating tumorigenesis and metastasis. Although epigenetic dysregulation is closely related to tumor progression, reports regarding the relationship between G9a and its possible downstream factors regulating breast tumor growth are scarce.

View Article and Find Full Text PDF

CRISPR-Cas9 is a powerful tool for genome engineering, but its efficiency largely depends on guide RNA (gRNA). There are multiple methods available to evaluate the efficiency of gRNAs, including the T7E1 assay, surveyor nuclease assay, deep sequencing, and surrogate reporter systems. In the present study, we developed a cleavage-based surrogate that we have named the LacI-reporter to evaluate gRNA cleavage efficiency.

View Article and Find Full Text PDF

Introduction: Micro-computed tomography with nanoparticle contrast agents may be a suitable tool for monitoring the time course of the development and progression of tumors. Here, we suggest a practical and convenient experimental method for generating and longitudinally imaging murine liver cancer models.

Methods: Liver cancer was induced in 6 experimental mice by injecting clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 plasmids causing mutations in genes expressed by hepatocytes.

View Article and Find Full Text PDF

Double homeobox genes are unique to eutherian mammals. It has been proposed that the DUXC clade of the double homeobox gene family, which is present in multicopy long tandem arrays, plays an essential role in zygotic genome activation (ZGA). We generated a deletion of the tandem array encoding the DUXC gene of mouse, Double homeobox (Dux), and found it surprisingly to be homozygous viable and fertile.

View Article and Find Full Text PDF

Loss of silencing of the DUX4 gene on chromosome 4 causes facioscapulohumeral muscular dystrophy. While high level DUX4 expression induces apoptosis, the effects of low level DUX4 expression on human myogenic cells are not well understood. Low levels and sporadic expression of DUX4 have been reported in FSHD biopsy samples and myoblast cultures.

View Article and Find Full Text PDF

The receptor-like tyrosine kinase (Ryk), a Wnt receptor, is important for cell fate determination during corticogenesis. During neuronal differentiation, the Ryk intracellular domain (ICD) is cleaved. Cleavage of Ryk and nuclear translocation of Ryk-ICD are required for neuronal differentiation.

View Article and Find Full Text PDF

UHRF1 (ubiquitin-like, with PHD and RING finger domains 1) plays a crucial role in DNA methylation, chromatin remodeling and gene expression and is aberrantly upregulated in various types of human cancers. However, the precise role of UHRF1 in cancer remains controversial. In this study, we observed that hypoxia-induced downregulation of UHRF1 contributes to the induction of the epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma cells.

View Article and Find Full Text PDF

The fate of neural progenitor cells (NPCs) during corticogenesis is determined by a complex interplay of genetic or epigenetic components, but the underlying mechanism is incompletely understood. Here, we demonstrate that Suppressor of Mek null (Smek) interact with methyl-CpG-binding domain 3 (Mbd3) and the complex plays a critical role in self-renewal and neuronal differentiation of NPCs. We found that Smek promotes Mbd3 polyubiquitylation and degradation, blocking recruitment of the repressive Mbd3/nucleosome remodeling and deacetylase (NuRD) complex at the neurogenesis-associated gene loci, and, as a consequence, increasing acetyl histone H3 activity and cortical neurogenesis.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy is a genetically dominant, currently untreatable muscular dystrophy. It is caused by mutations that enable expression of the normally silent DUX4 gene, which encodes a pathogenic transcription factor. A screen based on Tet-on DUX4-induced mouse myoblast death previously uncovered compounds from a 44,000-compound library that protect against DUX4 toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed miRNA expression changes in mouse spleens and different hepatocyte types after LDIR exposure and used several techniques, including qRT-PCR and Western blotting, to assess these changes.
  • * Notably, the study found that miR-193b-3p expression decreased in response to LDIR due to histone deacetylation, but this effect could be reversed with a pretreatment, highlighting the role of miRNAs in cellular stress and repair mechanisms after radiation exposure.
View Article and Find Full Text PDF

Ectopic expression of the double homeodomain transcription factor DUX4 causes facioscapulohumeral muscular dystrophy (FSHD). Mechanisms of action of DUX4 are currently unknown. Using immortalized human myoblasts with a titratable DUX4 transgene, we identify by mass spectrometry an interaction between the DUX4 C-terminus and the histone acetyltransferases p300/CBP.

View Article and Find Full Text PDF

Background: Misexpression of the double homeodomain transcription factor DUX4 results in facioscapulohumeral muscular dystrophy (FSHD). A DNA-binding consensus with two tandem TAAT motifs based on chromatin IP peaks has been discovered; however, the consensus has multiple variations (flavors) of unknown relative activity. In addition, not all peaks have this consensus, and the Pitx1 promoter, the first DUX4 target sequence mooted, has a different TAAT-rich sequence.

View Article and Find Full Text PDF

Activation of epithelial-mesenchymal transition (EMT) is important for malignant tumor progression exhibiting migratory and invasive properties. UHRF1 (ubiquitin-like, with PHD and RING finger domains 1), as an epigenetic regulator, plays a crucial role in DNA CpG methylation, chromatin remodeling and gene expression. Many studies demonstrated that UHRF1 is aberrantly expressed in various types of human cancer.

View Article and Find Full Text PDF

The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD). Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT) in several models of Huntington's disease (HD).

View Article and Find Full Text PDF

Background: Facioscapulohumeral muscular dystrophy (FSHD) is caused by epigenetic alterations at the D4Z4 macrosatellite repeat locus on chromosome 4, resulting in inappropriate expression of the DUX4 protein. The DUX4 protein is therefore the primary molecular target for therapeutic intervention.

Methods: We have developed a high-throughput screen based on the toxicity of DUX4 when overexpressed in C2C12 myoblasts, and identified inhibitors of DUX4-induced toxicity from within a diverse set of 44,000 small, drug-like molecules.

View Article and Find Full Text PDF

Neural progenitor cells (NPCs) are multipotent cells that can self-renew and differentiate into neurons and glial cells. However, mechanisms that control their fate decisions are poorly understood. Here, we show that Smek1, a regulatory subunit of the serine/threonine protein phosphatase PP4, promotes neuronal differentiation and suppresses the proliferative capacity of NPCs.

View Article and Find Full Text PDF