Publications by authors named "Shyue Ping Ong"

LiNiCoMnO (0 < x, y < 1, NCM) is the dominant positive material for the state-of-the-art lithium-ion batteries. However, the sensitivity of NCM materials to moisture makes their manufacturing, storage, transportation, electrode processing and recycling complicated. Although it is recognized that protons play a critical role in their structure stability and performance, proton exchange with Li in NCM materials has not been well understood.

View Article and Find Full Text PDF

The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the v1.

View Article and Find Full Text PDF

All-solid-state lithium-sulfur batteries (ASSLSBs) are promising next-generation battery technologies with a high energy density and excellent safety. Because of the insulating nature of sulfur/LiS, conventional cathode designs focus on developing porous hosts with high electronic conductivities such as porous carbon. However, carbon hosts boost the decomposition of sulfide electrolytes and suffer from sulfur detachment due to their weak bonding with sulfur/LiS, resulting in capacity decays.

View Article and Find Full Text PDF
Article Synopsis
  • P2-type NaNiMnO (PNNMO) is a promising material for sodium-ion batteries but struggles with Na transport due to its Na/vacancy ordering, which is influenced by the arrangement of transition metals.
  • Introducing lithium into the structure (NaLiNiMnO, LFN5) improves the interplanar ordering of Ni/Mn while maintaining the Na/vacancy configuration, leading to better pathways for sodium ions to move.
  • While another material (NaNiMnO, NM13) shows comparable sodium diffusivity to LFN5, it has a lower capacity for high currents due to unfavorable site energies and disrupted diffusion pathways, highlighting that control of material composition is crucial for optimizing sodium transport.
View Article and Find Full Text PDF

Solid-state Li-S batteries (SSLSBs) are made of low-cost and abundant materials free of supply chain concerns. Owing to their high theoretical energy densities, they are highly desirable for electric vehicles. However, the development of SSLSBs has been historically plagued by the insulating nature of sulfur and the poor interfacial contacts induced by its large volume change during cycling, impeding charge transfer among different solid components.

View Article and Find Full Text PDF

Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, LiLaTiO (LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related LiSrTaZrO (LSTZ0.

View Article and Find Full Text PDF

The ε-LiVOPO cathode for Li-ion batteries has attracted wide attention with its multivalent electronic states and improved discharge capacity of over 300 mAh/g. Oxygen loss stands as a potential cause for structural degradations of the ε-LiVOPO cathode and its derivatives but has been barely studied. Through environmental transmission electron microscopy, we probe lattice oxygen loss and the associated structural degradations by spatially and temporally resolving the atomic-scale structural dynamics and phase transformation pathways in ε-LiVOPO.

View Article and Find Full Text PDF

Interatomic potentials (IAPs), which describe the potential energy surface of atoms, are a fundamental input for atomistic simulations. However, existing IAPs are either fitted to narrow chemistries or too inaccurate for general applications. Here we report a universal IAP for materials based on graph neural networks with three-body interactions (M3GNet).

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) are among the most promising energy storage technologies due to the low cost and high abundance of S. However, the issue of polysulfide shuttling with its corresponding capacity fading is a major impediment to its commercialization. Replacing traditional liquid electrolytes with solid-state electrolytes (SEs) is a potential solution.

View Article and Find Full Text PDF

Intercalation-type metal oxides are promising negative electrode materials for safe rechargeable lithium-ion batteries due to the reduced risk of Li plating at low voltages. Nevertheless, their lower energy and power density along with cycling instability remain bottlenecks for their implementation, especially for fast-charging applications. Here, we report a nanostructured rock-salt NbO electrode formed through an amorphous-to-crystalline transformation during repeated electrochemical cycling with Li.

View Article and Find Full Text PDF

Vanadium dioxide (VO), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO at local areas in planar VO/TiO device configuration under external biasing.

View Article and Find Full Text PDF

Mixing transition metal cations in nearly equiatomic proportions in layered oxide cathode materials is a new strategy for improving the performances of Na-ion batteries. The mixing of cations not only offers entropic stabilization of the crystal structure but also benefits the diffusion of Na ions with tuned diffusion activation energy barriers. In light of this strategy, a high-rate Na(TiMnCoNiRu)O cathode was designed, synthesized, and investigated, combining graph-based deep learning calculations and complementary experimental characterizations.

View Article and Find Full Text PDF

Refractory high-entropy alloys (RHEAs) are designed for high elevated-temperature strength, with both edge and screw dislocations playing an important role for plastic deformation. However, they can also display a significant energetic driving force for chemical short-range ordering (SRO). Here, we investigate mechanisms underlying the mobilities of screw and edge dislocations in the body-centered cubic MoNbTaW RHEA over a wide temperature range using extensive molecular dynamics simulations based on a highly-accurate machine-learning interatomic potential.

View Article and Find Full Text PDF

In this work, we demonstrate a method to quantify uncertainty in corrections to density functional theory (DFT) energies based on empirical results. Such corrections are commonly used to improve the accuracy of computational enthalpies of formation, phase stability predictions, and other energy-derived properties, for example. We incorporate this method into a new DFT energy correction scheme comprising a mixture of oxidation-state and composition-dependent corrections and show that many chemical systems contain unstable polymorphs that may actually be predicted stable when uncertainty is taken into account.

View Article and Find Full Text PDF

The L-edge X-ray Absorption Near Edge Structure (XANES) is widely used in the characterization of transition metal compounds. Here, we report the development of a database of computed L-edge XANES using the multiple scattering theory-based FEFF9 code. The initial release of the database contains more than 140,000 L-edge spectra for more than 22,000 structures generated using a high-throughput computational workflow.

View Article and Find Full Text PDF

Rechargeable solid-state sodium-ion batteries (SSSBs) hold great promise for safer and more energy-dense energy storage. However, the poor electrochemical stability between current sulfide-based solid electrolytes and high-voltage oxide cathodes has limited their long-term cycling performance and practicality. Here, we report the discovery of the ion conductor NaYZrCl (NYZC) that is both electrochemically stable (up to 3.

View Article and Find Full Text PDF

Predicting the properties of a material from the arrangement of its atoms is a fundamental goal in materials science. While machine learning has emerged in recent years as a new paradigm to provide rapid predictions of materials properties, their practical utility is limited by the scarcity of high-fidelity data. Here, we develop multi-fidelity graph networks as a universal approach to achieve accurate predictions of materials properties with small data sizes.

View Article and Find Full Text PDF

Analyzing coordination environments using X-ray absorption spectroscopy has broad applications in solid-state physics and material chemistry. Here, we show that random forest models trained on 190,000 K-edge X-ray absorption near-edge structure (XANES) spectra can identify the main atomic coordination environment with a high accuracy of 85.4% and all associated coordination environments with a high Jaccard score of 81.

View Article and Find Full Text PDF

Rechargeable lithium-ion batteries with high energy density that can be safely charged and discharged at high rates are desirable for electrified transportation and other applications. However, the sub-optimal intercalation potentials of current anodes result in a trade-off between energy density, power and safety. Here we report that disordered rock salt LiVO can be used as a fast-charging anode that can reversibly cycle two lithium ions at an average voltage of about 0.

View Article and Find Full Text PDF

Since its development in the 1970s, the rechargeable alkali-ion battery has proven to be a truly transformative technology, providing portable energy storage for devices ranging from small portable electronics to sizable electric vehicles. Here, we present a review of modern theoretical and computational approaches to the study and design of rechargeable alkali-ion battery materials. Starting from fundamental thermodynamics and kinetics phenomenological equations, we rigorously derive the theoretical relationships for key battery properties, such as voltage, capacity, alkali diffusivity, and other electrochemically relevant computable quantities.

View Article and Find Full Text PDF

Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors-atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors-using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding.

View Article and Find Full Text PDF

Enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against sulfide solid electrolytes. While protective oxide coating layers such as LiNbO (LNO) have been proposed, its precise working mechanisms are still not fully understood. Existing literature attributes reductions in interfacial impedance growth to the coating's ability to prevent interfacial reactions.

View Article and Find Full Text PDF

Triiodide/iodide (I/I) redox couple-mediated solar cells, batteries, and electrochromic devices require highly efficient and stable electrocatalysts for I reduction reaction (IRR) to overcome performance limitations, whereas the widely used platinum (Pt) cathode for IRR has limitations of high price and unfavorable durability. In this work, we present a halogen element (chlorine) doping strategy to design low-cost perovskite-type electrocatalysts with enhanced IRR activity and stability. The dye-sensitized solar cell (DSSC) assembled by the LaFeOCl cathode delivers an attractive power conversion efficiency (PCE) of 11.

View Article and Find Full Text PDF